A290569
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 15, 14, 1, 1, 9, 61, 105, 42, 1, 1, 17, 297, 1385, 945, 132, 1, 1, 33, 1585, 24273, 50521, 10395, 429, 1, 1, 65, 8865, 485729, 3976209, 2702765, 135135, 1430, 1, 1, 129, 50881, 10401345, 372281761, 1145032281, 199360981, 2027025, 4862
Offset: 0
G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k+1) + 4^k + 6^k + 1)*x^3 + ...
Square array begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, ...
: 2, 3, 5, 9, 17, 33, ...
: 5, 15, 61, 297, 1585, 8865, ...
: 14, 105, 1385, 24273, 485729, 10401345, ...
: 42, 945, 50521, 3976209, 372281761, 38103228225, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
A372001
Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Array starts:
[0] 1, 1, 2, 5, 14, 42, 132, ...
[1] 1, 1, 3, 15, 105, 945, 10395, ...
[2] 1, 1, 5, 61, 1385, 50521, 2702765, ...
[3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ...
[4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ...
[5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ...
[6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
.
Seen as a triangle T(n, k) = A(k, n - k):
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 1, 1]
[3] [ 5, 3, 1, 1]
[4] [ 14, 15, 5, 1, 1]
[5] [ 42, 105, 61, 9, 1, 1]
[6] [132, 945, 1385, 297, 17, 1, 1]
[7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
By ascending antidiagonals:
A290569.
-
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm.
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(dim):
for n in range(k, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])[-1] if seq else list(C[1])
def F(n): # Define the input functions.
def p0(): return lambda n: pow(n, n^0)
def p(k): return lambda n: pow(n + 1, k)
return [p0()] + [p(k) for k in range(n + 1)]
def A(n, dim): # Return only the main diagonal of the triangle.
return [r for r in GeneralizedDelehamDelta(F(n), dim)]
for n in range(7): print(A(n, 7))
def T(n, dim): # Return the regularized triangle.
R = GeneralizedDelehamDelta(F(n), dim, False)
return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
for n in range(0, 4):
for row in T(n, 6): print(row)
A291331
a(n) = [x^n] 1/(1 - 2^n*x/(1 - 4^n*x/(1 - 6^n*x/(1 - 8^n*x/(1 - 10^n*x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, 2, 80, 152064, 31832735744, 1278532180456243200, 15158097871912903189326725120, 75553979800594222861911290918096439607296, 213679399657239557797941463213636090471439135194537263104
Offset: 0
-
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i)^n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 8}]
A292920
a(n) = [x^n] 1/(1 + x/(1 - 2^n*x/(1 + 3^n*x/(1 - 4^n*x/(1 + 5^n*x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, -1, -3, 167, 262305, -19802585281, -111307539961183167, 66192452118355875767376767, 5609362049224731266886822845131449345, -87773600779729250264394909974880988558750376171521, -318955450227538853365057634352430260175496937997604285602324132863
Offset: 0
-
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-(-1)^k k^n x, 1, {k, 1, n}]), {x, 0, n}], {n, 0, 10}]
A317103
Expansion of e.g.f. -LambertW(-x) * Product_{k>=1} 1/(1-x^k).
Original entry on oeis.org
0, 1, 4, 27, 220, 2265, 27246, 393421, 6548536, 126257697, 2767122010, 68387691141, 1882488882660, 57198150690577, 1900138953826582, 68502961685976525, 2662089147552365296, 110887849449189768513, 4926985461324765096498, 232544882903837769171829
Offset: 0
-
nmax = 20; CoefficientList[Series[-LambertW[-x]*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
Table[n!*Sum[PartitionsP[n-k]*k^(k-1)/k!, {k, 1, n}], {n, 0, 20}]
Showing 1-5 of 5 results.
Comments