A216966
O.g.f.: 1/(1 - x/(1 - 2^3*x/(1 - 3^3*x/(1 - 4^3*x/(1 - 5^3*x/(1 - 6^3*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 9, 297, 24273, 3976209, 1145032281, 530050022073, 369626762653857, 369614778179835681, 509880429246329788329, 940535818601273787325257, 2261104378216803649437779313, 6933711495845384616312688513329, 26630255658298074277771723491847161
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2 + 297*x^3 + 24273*x^4 + 3976209*x^5 +...
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else -(k - n - 1)^3 * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..14); # Peter Luschny, Oct 02 2023
-
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^3*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
{a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^3*x*CF)); polcoeff(CF,n)}
for(n=0,20,print1(a(n),", "))
A227887
O.g.f.: 1/(1 - x/(1 - 2^4*x/(1 - 3^4*x/(1 - 4^4*x/(1 - 5^4*x/(1 - 6^4*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 17, 1585, 485729, 372281761, 601378506737, 1820943071778385, 9489456505643743169, 79759396929125826861121, 1027412704023984825792488657, 19464301715272748317827942755185, 524230105465412991467916306841439009, 19509134827116013764271741468197795034081
Offset: 0
G.f.: A(x) = 1 + x + 17*x^2 + 1585*x^3 + 485729*x^4 + 372281761*x^5 +...
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (k - n - 1)^4 * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..13); # Peter Luschny, Oct 02 2023
-
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^4*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
{a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^4*x*CF)); polcoeff(CF, n)}
for(n=0, 20, print1(a(n), ", "))
A337807
O.g.f.: 1/(1 - x/(1 - 2^5*x/(1 - 3^5*x/(1 - 4^5*x/(1 - 5^5*x/(1 - 6^5*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, 7139708074971014625, 284135772494258636522625, 20513418606891012201924650625, 2521576999908767233729260158270625, 501403316300941434382591838239147790625, 154613553816538472779474765739707728587090625
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^5*x]], {x, 0, nmax}], x]
A337809
O.g.f.: 1/(1 - x/(1 - 2^7*x/(1 - 3^7*x/(1 - 4^7*x/(1 - 5^7*x/(1 - 6^7*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 129, 296577, 5273061633, 456296857756929, 143521873041157216641, 134210828762693919568092033, 322179101908965036802512977670657, 1775143826590061506939568896182460951041, 20554318541749460884980441781629250054049026689
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^7*x]], {x, 0, nmax}], x]
A372001
Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Array starts:
[0] 1, 1, 2, 5, 14, 42, 132, ...
[1] 1, 1, 3, 15, 105, 945, 10395, ...
[2] 1, 1, 5, 61, 1385, 50521, 2702765, ...
[3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ...
[4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ...
[5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ...
[6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
.
Seen as a triangle T(n, k) = A(k, n - k):
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 1, 1]
[3] [ 5, 3, 1, 1]
[4] [ 14, 15, 5, 1, 1]
[5] [ 42, 105, 61, 9, 1, 1]
[6] [132, 945, 1385, 297, 17, 1, 1]
[7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
By ascending antidiagonals:
A290569.
-
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm.
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(dim):
for n in range(k, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])[-1] if seq else list(C[1])
def F(n): # Define the input functions.
def p0(): return lambda n: pow(n, n^0)
def p(k): return lambda n: pow(n + 1, k)
return [p0()] + [p(k) for k in range(n + 1)]
def A(n, dim): # Return only the main diagonal of the triangle.
return [r for r in GeneralizedDelehamDelta(F(n), dim)]
for n in range(7): print(A(n, 7))
def T(n, dim): # Return the regularized triangle.
R = GeneralizedDelehamDelta(F(n), dim, False)
return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
for n in range(0, 4):
for row in T(n, 6): print(row)
Showing 1-5 of 5 results.
Comments