cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227918 Sum over all permutations beginning and ending with ascents, and without double ascents on n elements and each permutation contributes 2 to the power of the number of double descents.

Original entry on oeis.org

1, 0, 5, 22, 137, 956, 7653, 68874, 688745, 7576192, 90914309, 1181886014, 16546404201, 248196063012, 3971137008197, 67509329139346, 1215167924508233, 23088190565656424, 461763811313128485, 9697040037575698182, 213334880826665360009, 4906702259013303280204, 117760854216319278724901
Offset: 2

Views

Author

Richard Ehrenborg, Oct 08 2013

Keywords

Examples

			a(4) = 5 since the sum is over the five permutations 1324, 1423, 2314, 2413 and 3412, and each of them contribute 1 to the sum, since none of them has a double descent.
		

Crossrefs

Programs

  • Mathematica
    a[2] = 1; a[n_] := n*a[n - 1] + 1 + 4 (-1)^n;  Table[a[n], {n, 2, 20}] (* Wesley Ivan Hurt, May 04 2014 *)

Formula

E.g.f.: (exp(x) - 4 + 4*exp(-x))/(1-x) - 1 + 2*x.
Closest integer to (e - 4 + 4/e)*n! for n > 7.
a(n) = n*a(n-1) + 1 + 4*(-1)^n.
Conjecture: a(n) -n*a(n-1) -a(n-2) +(n-2)*a(n-3) = 0. - R. J. Mathar, Jul 17 2014