A227985 Numerators of the fractional triangle T(n,k) = binomial(n-1,k)*B_k for 0 <= k < n.
1, 0, -1, 0, -1, 1, 0, -1, 1, -1, 0, -1, 1, -1, 0, 0, -1, 1, -5, 0, 1, 0, -1, 1, -1, 0, 1, 0, 0, -1, 1, -7, 0, 7, 0, -1, 0, -1, 1, -2, 0, 7, 0, -2, 0, 0, -1, 1, -3, 0, 7, 0, -1, 0, 3, 0, -1, 1, -5, 0, 1, 0, -1, 0, 1, 0, 0, -1, 1, -11, 0, 11, 0, -11, 0, 11, 0, -5, 0, -1, 1, -1, 0, 11, 0, -22, 0, 33, 0, -5, 0
Offset: 0
Examples
Triangle begins: 1, 0, -1, 0, -1, 1, 0, -1, 1, -1, 0, -1, 1, -1, 0, 0, -1, 1, -5, 0, 1, 0 -1, 1, -1, 0, 1, 0, 0, -1, 1, -7, 0, 7, 0, -1, 0, -1, 1, -2, 0, 7, 0, -2, 0, etc.
Programs
-
Magma
[1] cat [Numerator(-Binomial(n,k)*Bernoulli(k)/n): k in [-1..n-2], n in [2..15]]; // Bruno Berselli, Sep 09 2013
-
Mathematica
b[0] = 1; b[1] = -1/2; row[0] = {1}; row[1] = {0, -1/2}; row[n_] := Join[{0}, List @@ (-Sum[Binomial[n+1, k]*B[k], {k, 0, n-1}]/(n+1) // Expand) /. B -> b]; b[n_] := Total[row[n]]; Table[row[n] // Numerator, {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)
-
PARI
t(n, k) = if (n==1, 1, if (k== -1, 0, -bernfrac(k)*binomial(n, k)/n)); tabl(nn) = {for (n = 1, nn, for (k = -1, n-2, print1(t(n, k), ", ");); print(););} \\ Michel Marcus, Sep 07 2013
Extensions
More terms from Jean-François Alcover, Aug 12 2013
Comments