A228021 Prime(k) such that 2^(k - 1) + prime(k) is also prime.
2, 3, 29, 89, 251, 659, 937, 1307, 1453, 8179, 9391, 12097, 28499, 83969, 101209, 120739, 730993
Offset: 1
Examples
29 is in the sequence because 29 = prime(10) and 2^(10 - 1) + 29 = 512 + 29 = 541 is prime.
Programs
-
Maple
for i from 1 do p := ithprime(i) ; if isprime(p+2^(i-1)) then printf("%d,\n",p) ; end if; end do: # R. J. Mathar, Jul 12 2014
-
Mathematica
p = 2; lst = {}; While[p < 730001, If[ PrimeQ[ 2^(PrimePi@ p-1) + p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 09 2014 *)
-
PARI
lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip-1)+p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014
Extensions
a(3) - a(9) from _Olivier Gérard_, Aug 01 2013
a(10) - a(15) from Robert G. Wilson v, Aug 01 2013
a(16) from Robert G. Wilson v, Jul 09 2014
a(17) from Michael S. Branicky, Apr 14 2025
Comments