A228059 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1 that are closer to being perfect than previous terms.
45, 405, 2205, 26325, 236925, 1380825, 1660725, 35698725, 3138290325, 29891138805, 73846750725, 194401220013, 194509436121, 194581580193, 194689796301, 194798012409, 194906228517, 194942300553, 195230876841, 195339092949, 195447309057, 195699813309
Offset: 1
Keywords
Examples
45 = 5 * 3^2. 405 = 5 * 3^4. 2205 = 5 * (3 * 7)^2. 26325 = 13 * (3^2 * 5)^2. 236925 = 13 * (3^3 * 5)^2. 1380825 = 17 * (3 * 5 * 19)^2. 1660725 = 61 * (3 * 5 * 11)^2. 35698725 = 61 * (3^2 * 5 * 17)^2. 3138290325 = 53 * (3^4 * 5 * 19)^2. 29891138805 = 5 * (3^2 * 11^2 * 71)^2. 73846750725 = 509 * (3 * 5 * 11 * 73)^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..37
- Jose Arnaldo B. Dris, The abundancy index of divisors of odd perfect numbers, J. Integer Sequences, 15 (2012), Article 12.4.4.
- Jose Arnaldo B. Dris, A short "proof" for Sorli's conjecture on odd perfect numbers, arxiv 1308.2156 [math.NT], 2013-2015.
- Jose Arnaldo B. Dris, Euclid-Euler Heuristics for (Odd) Perfect Numbers, arXiv preprint arXiv:1310.5616 [math.NT], 2013-2017.
- Jose Arnaldo B. Dris, A Sufficient Condition for Disproving Descartes's Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1311.6803 [math.NT], 2013-2015.
- Jose Arnaldo Bebita Dris, Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205.
- Index entries for sequences where any odd perfect numbers must occur
Crossrefs
Programs
-
Mathematica
nn = 7; f[n_] := Abs[DivisorSigma[1, n]/n - 2]; n = 45; t = {n}; lastF = f[n]; cnt = 1; While[cnt < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1, 1]]]], 4] == 1 && f[n] < lastF, cnt++; lastF = f[n]; Print[{n, lastF}]; AppendTo[t, n]]]; t
-
PARI
isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y)); m=-1; n=0; while(m!=0, n++; if(isA228058(n), if((m<0) || abs((sigma(n)/n)-2)
Antti Karttunen, Apr 22 2019
Extensions
a(10) (as communicated by T. D. Noe) added by Jose Arnaldo Bebita Dris, Aug 16 2018
a(11)-a(22) from Giovanni Resta, Aug 16 2018
Comments