cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228059 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1 that are closer to being perfect than previous terms.

Original entry on oeis.org

45, 405, 2205, 26325, 236925, 1380825, 1660725, 35698725, 3138290325, 29891138805, 73846750725, 194401220013, 194509436121, 194581580193, 194689796301, 194798012409, 194906228517, 194942300553, 195230876841, 195339092949, 195447309057, 195699813309
Offset: 1

Views

Author

T. D. Noe, Aug 14 2013

Keywords

Comments

A number x is perfect if sigma(x) = 2x, where sigma is the sum of divisors of x. See A228058 for numbers of the form p^(1+4k) * r^2. This sequence ends when the first odd perfect number occurs.
The first two papers by Dris listed below are for information only; this sequence in independent of the papers. In the second paper, Dris attempts to prove that the exponent of p above is 1 for odd perfect numbers. Coincidently, the first 9 numbers in this sequence have exponent 1.
a(38) > 10^12. - Giovanni Resta, Aug 16 2018
a(38) <= 283665529390725 = 15349 * (3^3 * 5 * 19 * 53)^2. - Giovanni Resta, Aug 23 2018
a(39) <= 3116918388785625 = 37993 * (3^2 * 5^2 * 19 * 67)^2. - Alexander Violette, Mar 05 2022
The first 37 terms are all multiples of 3, as well as the two additional terms given above. See also comments in A349752. - Antti Karttunen, Jan 04 2025

Examples

			           45 =   5 * 3^2.
          405 =   5 * 3^4.
         2205 =   5 * (3 * 7)^2.
        26325 =  13 * (3^2 * 5)^2.
       236925 =  13 * (3^3 * 5)^2.
      1380825 =  17 * (3 * 5 * 19)^2.
      1660725 =  61 * (3 * 5 * 11)^2.
     35698725 =  61 * (3^2 * 5 * 17)^2.
   3138290325 =  53 * (3^4 * 5 * 19)^2.
  29891138805 =   5 * (3^2 * 11^2 * 71)^2.
  73846750725 = 509 * (3 * 5 * 11 * 73)^2.
		

Crossrefs

Cf. A000203 (sigma), A000396 (perfect numbers), A228058, A325379, A349752.
Cf. also A171929.

Programs

  • Mathematica
    nn = 7; f[n_] := Abs[DivisorSigma[1, n]/n - 2]; n = 45; t = {n}; lastF = f[n]; cnt = 1; While[cnt < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1, 1]]]], 4] == 1 && f[n] < lastF, cnt++; lastF = f[n]; Print[{n, lastF}]; AppendTo[t, n]]]; t
  • PARI
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    m=-1; n=0; while(m!=0, n++; if(isA228058(n), if((m<0) || abs((sigma(n)/n)-2)Antti Karttunen, Apr 22 2019

Extensions

a(10) (as communicated by T. D. Noe) added by Jose Arnaldo Bebita Dris, Aug 16 2018
a(11)-a(22) from Giovanni Resta, Aug 16 2018