A253827 a(n) is the number of primes of the form x^2 + x + prime(n) for 0 <= x <=prime(n).
1, 2, 4, 4, 10, 4, 16, 6, 10, 13, 14, 16, 40, 8, 26, 19, 34, 21, 36, 28, 18, 18, 34, 27, 31, 68, 16, 71, 30, 23, 37, 37, 67, 44, 54, 55, 54, 26, 65, 50, 70, 68, 79, 43, 60, 70, 52, 51, 132, 38, 60, 100, 59, 111, 114, 84, 77, 68, 78, 105, 49, 67, 124, 145, 35
Offset: 1
Keywords
Examples
a(13) = 40 because prime(13) = 41 and x^2 + x + 41 generates 40 prime numbers for x = 0..41.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..4000
- Eric Weisstein's World of Mathematics, Lucky Number of Euler
Programs
-
Maple
f:= proc(n) local p,x; p:= ithprime(n); nops(select(isprime, [seq(x^2+x+p,x=0..p)])) end proc: seq(f(n), n=1..100); # Robert Israel, Jan 16 2015
-
Mathematica
lst={};Do[p=Prime[n];k=0;Do[If[PrimeQ[x^2+x+p],k=k+1],{x,0,p}];AppendTo[lst,k],{n,1,100}];lst Table[With[{p=Prime[n]},Count[Table[x^2+x+p,{x,0,p}],?PrimeQ]],{n,70}] (* _Harvey P. Dale, May 27 2018 *)
-
PARI
a(n) = my(p=prime(n)); sum(k=0, p, isprime(subst(x^2+x+p, x, k))); \\ Michel Marcus, Jan 16 2015
Comments