cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228154 T(n,k) is the number of s in {1,...,n}^n having longest contiguous subsequence with the same value of length k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 2, 2, 12, 12, 3, 108, 120, 24, 4, 1280, 1520, 280, 40, 5, 18750, 23400, 3930, 510, 60, 6, 326592, 423360, 65016, 7644, 840, 84, 7, 6588344, 8800008, 1241464, 132552, 13440, 1288, 112, 8, 150994944, 206622720, 26911296, 2622528, 244944, 22032, 1872, 144, 9
Offset: 1

Views

Author

Walt Rorie-Baety, Aug 15 2013

Keywords

Examples

			T(1,1) =  1: [1].
T(2,1) =  2: [1,2], [2,1].
T(2,2) =  2: [1,1], [2,2].
T(3,1) = 12: [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,1,2], [2,1,3], [2,3,1], [2,3,2], [3,1,2], [3,1,3], [3,2,1], [3,2,3].
T(3,2) = 12: [1,1,2], [1,1,3], [1,2,2], [1,3,3], [2,1,1], [2,2,1], [2,2,3], [2,3,3], [3,1,1], [3,2,2], [3,3,1], [3,3,2].
T(3,3) =  3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
.       1;
.       2,       2;
.      12,      12,       3;
.     108,     120,      24,      4;
.    1280,    1520,     280,     40,     5;
.   18750,   23400,    3930,    510,    60,    6;
.  326592,  423360,   65016,   7644,   840,   84,   7;
. 6588344, 8800008, 1241464, 132552, 13440, 1288, 112,  8;
		

Crossrefs

Row sums give: A000312.
Column k=1 gives: A055897.
Main diagonal gives: A000027.
Lower diagonal gives: 2*A180291.

Programs

  • Maple
    T:= proc(n) option remember; local b; b:=
          proc(m, s, i) option remember; `if`(m>i or s>m, 0,
            `if`(i=1, n, `if`(s=1, (n-1)*add(b(m, h, i-1), h=1..m),
             b(m, s-1, i-1) +`if`(s=m, b(m-1, s-1, i-1), 0))))
          end; forget(b);
          seq(add(b(k, s, n), s=1..k), k=1..n)
        end:
    seq(T(n), n=1..12);  # Alois P. Heinz, Aug 18 2013
  • Mathematica
    T[n_] := T[n] = Module[{b}, b[m_, s_, i_] := b[m, s, i] = If[m>i || s>m, 0, If[i == 1, n, If[s == 1, (n-1)*Sum[b[m, h, i-1], {h, 1, m}], b[m, s-1, i-1] + If[s == m, b[m-1, s-1, i-1], 0]]]]; Table[Sum[b[k, s, n], {s, 1, k}], {k, 1, n}]]; Table[ T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A228194(n). - Alois P. Heinz, Dec 23 2020