cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228195 Primes with the property that the sum of the cubes of their digits plus the prime equals another prime squared.

Original entry on oeis.org

17, 2897, 11471, 15527, 19949, 26693, 26783, 72467, 78041, 142757, 159209, 216791, 350747, 366917, 672593, 725891, 775007, 1187939, 1529153, 1659737, 2024093, 2035097, 2035349, 2105231, 2127761, 2598929, 2645933, 2917799, 3322439, 3497993, 3970643, 4042697, 4067513, 4280051, 4329257, 4464017, 5839397
Offset: 1

Views

Author

Will Gosnell, Aug 15 2013

Keywords

Examples

			17 is a term since (1^3 + 7^3) + 17 = 19^2.
2897 is a term since (2^3 + 8^3 + 9^3 + 7^3) + 2897 = 67^2.
11471 is a term since (1^3 + 1^3 + 4^3 + 7^3 + 1^3) + 11471 = 109^2.
		

Programs

  • Mathematica
    Select[Prime[Range[403000]],PrimeQ[Sqrt[#+Total[IntegerDigits[#]^3]]]&] (* Harvey P. Dale, Oct 15 2023 *)
  • PARI
    is(n)=my(d=digits(n),k); issquare(sum(i=1,#d,d[i]^3)+n,&k) && isprime(k) && isprime(n) \\ Charles R Greathouse IV, Jun 16 2014
    
  • PARI
    searchdigit(n)=my(v=List(),N1=10^(n-1),N2=10^n,t=729*n,d,k,p2);forprime(p=sqrtint(N1)+1,sqrtint(N2+t),p2=p^2;forprime(q=max(N1,p2-t+2),min(N2,p2-2),d=digits(q);if(sum(i=1,#d,d[i]^3)+q==p2,listput(v,q))));Vec(v)
    v=[];for(n=1,9,v=concat(v,searchdigit(n))); v \\ Charles R Greathouse IV, Jun 16 2014

Extensions

a(10)-a(37) from Charles R Greathouse IV, Jun 16 2014