A228195 Primes with the property that the sum of the cubes of their digits plus the prime equals another prime squared.
17, 2897, 11471, 15527, 19949, 26693, 26783, 72467, 78041, 142757, 159209, 216791, 350747, 366917, 672593, 725891, 775007, 1187939, 1529153, 1659737, 2024093, 2035097, 2035349, 2105231, 2127761, 2598929, 2645933, 2917799, 3322439, 3497993, 3970643, 4042697, 4067513, 4280051, 4329257, 4464017, 5839397
Offset: 1
Examples
17 is a term since (1^3 + 7^3) + 17 = 19^2. 2897 is a term since (2^3 + 8^3 + 9^3 + 7^3) + 2897 = 67^2. 11471 is a term since (1^3 + 1^3 + 4^3 + 7^3 + 1^3) + 11471 = 109^2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[403000]],PrimeQ[Sqrt[#+Total[IntegerDigits[#]^3]]]&] (* Harvey P. Dale, Oct 15 2023 *)
-
PARI
is(n)=my(d=digits(n),k); issquare(sum(i=1,#d,d[i]^3)+n,&k) && isprime(k) && isprime(n) \\ Charles R Greathouse IV, Jun 16 2014
-
PARI
searchdigit(n)=my(v=List(),N1=10^(n-1),N2=10^n,t=729*n,d,k,p2);forprime(p=sqrtint(N1)+1,sqrtint(N2+t),p2=p^2;forprime(q=max(N1,p2-t+2),min(N2,p2-2),d=digits(q);if(sum(i=1,#d,d[i]^3)+q==p2,listput(v,q))));Vec(v) v=[];for(n=1,9,v=concat(v,searchdigit(n))); v \\ Charles R Greathouse IV, Jun 16 2014
Extensions
a(10)-a(37) from Charles R Greathouse IV, Jun 16 2014