A224419 Numbers n such that triangular(n) + triangular(2*n) is a square.
0, 1, 25, 216, 1849, 36481, 311904, 2666689, 52606009, 449765784, 3845364121, 75857828929, 648561949056, 5545012396225, 109386936710041, 935225880773400, 7995904029992761, 157735886878050625, 1348595071513294176, 11530088066237165569, 227455039491212291641, 1944673157896289428824, 16626378995609962758169, 327990009210441246496129
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1442,-1442,0,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,0,1442,-1442,0,-1,1},{0,1,25,216,1849,36481,311904},30] (* Harvey P. Dale, Jan 23 2015 *)
-
Python
import math for i in range(1<<30): s = i*(i+1)/2 + i*(2*i+1) t = int(math.sqrt(s)) if s == t*t: print(i)
Formula
a(n) = (A228209(2*n-1) - 3) / 10. - Max Alekseyev, Sep 04 2013
G.f.: x^2*(x+1)*(x^4 + 23*x^3 + 168*x^2 + 23*x + 1) / (x^6 - 1442*x^3 + 1) / (1-x). - Max Alekseyev, Sep 04 2013
Extensions
Terms a(11) onward from Max Alekseyev, Sep 04 2013
Comments