cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A058290 Rounded difference between 10^n/(log(10^n) - A) and pi(10^n), where A is Legendre's constant and pi is the prime counting function.

Original entry on oeis.org

-1, 4, 3, 4, 2, -4, 45, 561, 6549, 69985, 690493, 6545056, 60615397, 555560046, 5070271362, 46223804313, 421692578206, 3853431791690, 35289854434775, 323979090116197, 2981921009910364, 27516571651291205, 254562416350667928
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

Legendre's constant is 1.08366 (A228211). - Alonso del Arte, Nov 02 2013
This sequence has historical rather than mathematical interest, cf. A228211. It is better to use 1 + 1/log(10^n) instead of A. Since A is given to only 5 decimal places, it does not make much sense to compute terms of this sequence beyond n ~ 10. For n = 9, the error a(9)/A006880(9) is about 0.14%, while the error for 1 + 1/log(10^9) instead of A is only about 0.04%. - M. F. Hasler, Dec 03 2018

References

  • Jan Gullberg, "Mathematics, From the Birth of Numbers", W. W. Norton and Company, NY and London, 1997, page 81.

Crossrefs

Programs

  • Mathematica
    Table[ Round[ 10^n /(Log[10^n] - 1.08366) - PrimePi[10^n] ], {n, 0, 13} ]
  • PARI
    {A006880_vec = [0, 4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511 4118054813, 37607912018, 346065536839, 3204941750802, 29844570422669, 279238341033925, 2623557157654233, 24739954287740860, 234057667276344607, 2220819602560918840, 21127269486018731928, 201467286689315906290, 1925320391606803968923]} \\ Edited by M. F. Hasler, Dec 03 2018
    {default(realprecision, 100); t=log(10); for (n=0, 23, write("b058290.txt", n, " ", round(10^n/(n*t - 1.08366)) - A006880_vec[n+1]))} \\ Harry J. Smith, Jun 22 2009
    
  • PARI
    A058290(n)={10^n\/(n*log(10)-1.08366)-A006880(n)} \\ with A006880(n)=primepi(10^n) and/or precomputed values for n > 10. - M. F. Hasler, Dec 03 2018

Formula

a(n) = round(10^n/(log(10^n) - 1.08366)) - A006880(n). - M. F. Hasler, Dec 03 2018

Extensions

More terms from Harry J. Smith, Jun 22 2009

A331020 Values k for successive maximal records of the function A defined as A(prime(k)) = log(prime(k)) - prime(k)/Pi(prime(k)) where Pi(prime(k)) is number of primes <= prime(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 18, 21, 27, 28, 29, 30, 46, 61, 91, 121, 180, 184, 185, 186, 188, 189, 214, 216, 217, 257, 258, 775, 832, 1217, 1225, 1227, 1269, 1270, 1846, 1847, 2682, 2683, 2684, 2685, 2686, 2688
Offset: 1

Views

Author

Artur Jasinski, Jan 07 2020

Keywords

Comments

This sequence is finite and complete.
Chebyshev 1852, goes on to conclude that if we put Pi(x) = x/(log(x) - A(x)) has a limit as x -> +infinity, then a limit must be 1, not 1.08366 (A228211), as Legendre incorrectly conjectured in 1808.
R. Farhadian & R. Jakimczuk 2018 prove again that the function A tends to 1 when n tends to infinity.
A(prime(2688)) = A(24137) = -24137/2688 + log(24137) = 1.11196252139...
A(n) <= -(24137/2688) + log(24137) for all positive integers n.

Examples

			   n | a(n) | A(prime(a(n)))
  ---+------+---------------
   1 |    1 | -1.306852819
   2 |    2 | -0.401387711
   3 |    3 | -0.057228754
   4 |    4 |  0.195910149
   5 |    5 |  0.197895272
   6 |    6 |  0.398282690
   7 |    7 |  0.404641915
   8 |    8 |  0.569438979
   9 |    9 |  0.579938660
  10 |   11 |  0.615805386
		

Crossrefs

Programs

  • Mathematica
    max = -2; aa = {}; Do[kk = Log[Prime[n]] - Prime[n]/PrimePi[Prime[n]];
    If[kk > max, max = kk; AppendTo[aa, n]], {n, 1, 2700}]; aa
Showing 1-2 of 2 results.