cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A228299 Composite squarefree numbers n such that p+d(n) divides n+d(n), where p are the prime factors of n and d(n) the number of divisors of n.

Original entry on oeis.org

21098, 134930, 343027, 361730, 387127, 751394, 793595, 1344517, 1430449, 1579394, 1794854, 3542797, 5022254, 7930117, 9241627, 12122947, 21089129, 21928717, 49825117, 70233329, 78795074, 90079589, 95208734, 110995807, 124648303, 124964219, 144871634
Offset: 1

Views

Author

Paolo P. Lava, Aug 20 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 21098 are 2, 7, 11 and 137 while d(21098) = 16. We have that 21098 + 16 = 21114 and 21114 / (2 + 16) =  1173, 21114 / (7 + 16) = 918, 21114 / (11 + 16) = 782 and 21114 / (137 + 16) = 138.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a,i,ok,n;
    for n from 1 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break;
    else if not type((n+tau(n))/(a[i][1]+tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);

Extensions

More terms from Michel Marcus, Sep 21 2013
Deleted first term from Paolo P. Lava, Sep 23 2013

A229276 Composite squarefree numbers n such that p-tau(n) divides n+sigma(n), where p are the prime factors of n, tau(n) = A000005(n) and sigma(n) = A000203(n).

Original entry on oeis.org

6, 10, 15, 66, 145, 231, 435, 1221, 11571, 99093, 105502, 292434, 449854, 585429, 643858, 968014, 1372494, 1787091, 1939434, 4659114, 5524014, 5654334, 6250371, 6974007, 19495374, 19821714, 28488039, 34701369, 46183893, 81133734, 213352233, 230140869
Offset: 1

Views

Author

Paolo P. Lava, Sep 19 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 435 are 3, 5, 29 and sigma(435) = 720, tau(435) = 8.
435 + 720 = 1155 and 1155 / (3 - 8) = -231, 1155 / (5 - 8) = -385, 1155 / (29 - 8) = 55.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
    else if not type((n+sigma(n))/(a[i][1]-tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(2*10^6);

Extensions

a(21)-a(33) from Giovanni Resta, Sep 20 2013
First term deleted by Paolo P. Lava, Sep 23 2013

A229324 Composite squarefree numbers n such that p + tau(n) divides n - phi(n), where p are the prime factors of n, tau(n) = A000005(n) and phi(n) = A000010(n).

Original entry on oeis.org

115, 205, 295, 565, 655, 745, 835, 1195, 1285, 1465, 1555, 1735, 1915, 2005, 2095, 2455, 2545, 2815, 2995, 3085, 3265, 3715, 3805, 3985, 4435, 4705, 4885, 5065, 5155, 5245, 5515, 5965, 6145, 6415, 6505, 6595, 6865, 7045, 7135, 7405, 7495, 7765, 7855, 8035
Offset: 1

Views

Author

Paolo P. Lava, Sep 20 2013

Keywords

Comments

All terms are apparently multiple of 5.
It appears that a(n) = 5*A061240(n+1). - Michel Marcus, Sep 21 2013

Examples

			Prime factors of 2815 are 5, 563 and tau(2815) = 4, phi(2815) = 2248. 2815 - 2248 = 567 and  567 / (5 + 4) = 63, 567 / (563 + 4) = 1.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) global a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break;
    else if not type((n-phi(n))/(a[i][1]+tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(6*10^9);

Extensions

Deleted first term, changed b-file and comment by Paolo P. Lava, Sep 23 2013

A229273 Composite squarefree numbers n such that p-tau(n) divides n-sigma(n), where p are the prime factors of n, tau(n) = A000005(n) and sigma(n) = A000203(n).

Original entry on oeis.org

6, 10, 15, 22, 78, 138, 273, 483, 3243, 3913, 104377, 477337, 1537627, 1904487, 2508961, 3326829, 3716167, 5148949, 6154017, 6686113, 11521842, 14355679, 16872583, 25165777, 28029883, 31232337, 32403342, 50725419, 57396469, 68815381, 86850249, 98242959
Offset: 1

Views

Author

Paolo P. Lava, Sep 19 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 273 are 3, 7, 13 and sigma(273) = 448, tau(273) = 8.
273 - 448 = -175 and (-175) / (3 - 8) = 35, (-175) / (7 - 8) = 175, (-175) / (13 - 8) = -35.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
    else if not type((n-sigma(n))/(a[i][1]-tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(2*10^6);

Extensions

a(20)-a(33) from Giovanni Resta, Sep 20 2013
First term deleted by Paolo P. Lava, Sep 23 2013

A229274 Composite squarefree numbers n such that p+tau(n) divides n-sigma(n), where p are the prime factors of n, tau(n) = A000005(n) and sigma(n) = A000203(n).

Original entry on oeis.org

51, 93, 177, 219, 303, 471, 597, 681, 723, 807, 849, 933, 1059, 1101, 1227, 1437, 1563, 1689, 1731, 1857, 1941, 1983, 2319, 2361, 2487, 2571, 2823, 2949, 2991, 3117, 3327, 3369, 3453, 3579, 3747, 3831, 3873, 3957, 4083, 4377, 4461, 4629, 4713, 4839, 4881
Offset: 1

Views

Author

Paolo P. Lava, Sep 19 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 177 are 3, 59 and sigma(177) = 240 , tau(177) = 4.
177 - 240 = -63 and (-63) / (3 + 4) = -9, (-63) / (59 + 4) = -1.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break;
    else if not type((n-sigma(n))/(a[i][1]+tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);

Extensions

First term deleted by Paolo P. Lava, Sep 23 2013

A229321 Composite squarefree numbers n such that p-tau(n) divides n+phi(n), where p are the prime factors of n, tau(n) = A000005(n) and phi(n) = A000010(n).

Original entry on oeis.org

6, 10, 15, 21, 39, 110, 170, 609, 897, 935, 1265, 1729, 2882, 2915, 12374, 15387, 161833, 411230, 444797, 558830, 842741, 881705, 1091810, 1122501, 1163990, 1342165, 1565565, 1898259, 2763901, 4157605, 4453697, 4675877, 5962835, 6241610, 6809690, 7201599
Offset: 1

Views

Author

Paolo P. Lava, Sep 20 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 1265 are 5, 11, 23 and tau(1265) = 8, phi(1265) = 880. 1265 + 880 = 2145 and 2145 / (5 - 8) = -715, 2145 / (11 - 8) = 715, 2145 / (23 - 8) = 143.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) global a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
    else if not type((n+phi(n))/(a[i][1]-tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(6*10^9);

Extensions

a(18)-a(37) from Giovanni Resta, Sep 20 2013
First term deleted by Paolo P. Lava, Sep 23 2013

A228300 Composite squarefree numbers n such that p-d(n) divides n-d(n), where p are the prime factors of n and d(n) the number of divisors of n.

Original entry on oeis.org

6, 10, 15, 110, 170, 273, 638, 935, 1394, 2093, 2438, 2465, 4823, 5453, 7973, 11978, 16354, 17963, 34918, 43337, 46943, 62491, 64583, 68266, 71603, 72046, 74347, 75361, 85877, 134458, 148291, 155933, 186235, 188071, 201994, 209933, 280891, 307021, 367081
Offset: 1

Views

Author

Paolo P. Lava, Aug 20 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 17963 are 11, 23 and 71 while d(17963) = 8. We have that 17963 - 8 = 17955 and 17955 / (11 - 8) =  5985, 17955 / (23 - 8) = 1197 and 17955 / (71 - 8) = 285.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a,b,c,i,ok,p,n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
    else if not type((n-tau(n))/(a[i][1]-tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);

Extensions

First term deleted by Paolo P. Lava, Sep 23 2013

A228301 Composite squarefree numbers n such that p-d(n) divides n+d(n), where p are the prime factors of n and d(n) the number of divisors of n.

Original entry on oeis.org

6, 10, 14, 15, 35, 70, 154, 190, 322, 385, 442, 595, 682, 2737, 3619, 14986, 15314, 19019, 24817, 26767, 33626, 78387, 85034, 130169, 155363, 166934, 189727, 214107, 225029, 238901, 243217, 285934, 381547, 395219, 415679, 417989, 455609, 466193, 544918
Offset: 1

Views

Author

Paolo P. Lava, Aug 20 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 19019 are 7, 11, 13 and 19 while d(19019) = 16. We have that 19019 + 16 = 19035 and 19035 / (7 - 16) =  -2115, 19035 / (11 - 16) =  -3807, 19035 / (13 - 16) = -6345 and 19035 / (19 - 16) = 6345.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a,b,c,i,ok,p,n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
    else if not type((n+tau(n))/(a[i][1]-tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);

Extensions

First term deleted by Paolo P. Lava, Sep 23 2013

A274443 Least composite squarefree number k such that (p-n) | (k-1) for all primes p dividing n.

Original entry on oeis.org

561, 21, 85, 15, 21, 35, 33, 21, 65, 91, 57, 91, 133, 55, 161, 91, 57, 133, 33, 253, 65, 91, 145, 115, 217, 451, 161, 703, 253, 551, 561, 253, 481, 217, 129, 451, 301, 1081, 161, 1189, 145, 989, 217, 235, 481, 703, 649, 329, 265, 1081, 1121, 1219, 145, 1037, 721
Offset: 1

Views

Author

Paolo P. Lava, Jun 23 2016

Keywords

Examples

			Prime factors of 561 are 3, 11 and 17: (561 - 1) / (3 - 1) = 560 / 2 = 280, (561 - 1) / (11 - 1) = 560 / 10 = 56 and (561 - 1) / (17 - 1) = 560 / 16 = 35.
Prime factors of 21 are 3 and 7: (21 - 1) / (3 - 2) = 20 / 1 = 20, (21 - 1) / (7 - 2) = 20 / 5 = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local d,k,n,ok,p;
    for k from 1 to q do for n from 2 to q do
    if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][1]=k then ok:=0; break; else
    if not type((n-1)/(p[d][1]-k),integer) then ok:=0; break; fi; fi; od;
    if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    t = Select[Range@2000, SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, If[# == 0, False, Divisible[k - 1, #]] &[# - n] &]]], {n, 55}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)

A274444 a(n) = smallest composite squarefree number k such that (p-n) | (k+1) for all primes dividing k.

Original entry on oeis.org

15, 65, 35, 15, 21, 35, 15, 35, 35, 77, 35, 55, 55, 143, 119, 51, 95, 155, 55, 323, 95, 119, 39, 391, 87, 209, 119, 299, 143, 341, 319, 629, 259, 899, 407, 185, 119, 299, 287, 1517, 203, 799, 159, 155, 407, 1189, 119, 517, 341, 1763, 1363, 629, 335, 2491, 493, 3599
Offset: 1

Views

Author

Paolo P. Lava, Jun 23 2016

Keywords

Examples

			a(1) = 15: Prime factors of 15 are 3 and 5: (15 + 1) / (3 - 1) = 16 / 2 = 8 and (15 + 1) / (5 - 1) = 16 / 4 = 4.
a(2) = 6: Prime factors of 65 are 5 and 13: (65 + 1) / (5 - 2) = 66 / 3 = 22 and (65 + 1) / (13 - 2) = 66 / 11 = 6.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local d,k,n,ok,p;
    for k from 1 to q do for n from 2 to q do
    if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][1]=k then ok:=0; break; else
    if not type((n+1)/(p[d][1]-k),integer) then ok:=0; break; fi; fi; od;
    if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    t = Select[Range[10^4], SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k,
    If[# == 0, False, Divisible[k + 1, #]] &[# - n] &]]], {n, 56}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)
Showing 1-10 of 15 results. Next