A228299 Composite squarefree numbers n such that p+d(n) divides n+d(n), where p are the prime factors of n and d(n) the number of divisors of n.
21098, 134930, 343027, 361730, 387127, 751394, 793595, 1344517, 1430449, 1579394, 1794854, 3542797, 5022254, 7930117, 9241627, 12122947, 21089129, 21928717, 49825117, 70233329, 78795074, 90079589, 95208734, 110995807, 124648303, 124964219, 144871634
Offset: 1
Keywords
Examples
Prime factors of 21098 are 2, 7, 11 and 137 while d(21098) = 16. We have that 21098 + 16 = 21114 and 21114 / (2 + 16) = 1173, 21114 / (7 + 16) = 918, 21114 / (11 + 16) = 782 and 21114 / (137 + 16) = 138.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..100
Programs
-
Maple
with (numtheory); P:=proc(q) local a,i,ok,n; for n from 1 to q do if not isprime(n) then a:=ifactors(n)[2]; ok:=1; for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break; else if not type((n+tau(n))/(a[i][1]+tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);
Extensions
More terms from Michel Marcus, Sep 21 2013
Deleted first term from Paolo P. Lava, Sep 23 2013
Comments