cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228315 Triangular array read by rows: T(n,k) is the number of rooted labeled simple graphs on {1,2,...,n} such that the root is in a component of size k; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 2, 6, 6, 12, 32, 24, 48, 152, 320, 160, 240, 760, 3640, 6144, 1920, 1920, 4560, 21840, 160224, 229376, 43008, 26880, 42560, 152880, 1121568, 13063792, 16777216, 1835008, 688128, 680960, 1630720, 8972544, 104510336, 2012388736
Offset: 1

Views

Author

Geoffrey Critzer, Aug 26 2013

Keywords

Comments

Row sums = A095340.
Column 1 = A123903.
T(n,k) = A223894(n,k)*k.
Diagonal = A053549.

Examples

			1;
2,    2;
6,    6,    12;
32,   24,   48,    152;
320,  160,  240,   760,    3640;
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7.

Crossrefs

Cf. A070166.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*k*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 10; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a =
    Drop[Range[0, nn]! CoefficientList[Series[Log[g], {x, 0, nn}], x],
      1]; Table[
      Table[Binomial[n, k] k a[[k]] 2^Binomial[n - k, 2], {k, 1, n}], {n,
       1, 7}] // Grid

Formula

T(n,k) = binomial(n,k)*k*A001187(k)*A006125(n-k).