A228315 Triangular array read by rows: T(n,k) is the number of rooted labeled simple graphs on {1,2,...,n} such that the root is in a component of size k; n>=1, 1<=k<=n.
1, 2, 2, 6, 6, 12, 32, 24, 48, 152, 320, 160, 240, 760, 3640, 6144, 1920, 1920, 4560, 21840, 160224, 229376, 43008, 26880, 42560, 152880, 1121568, 13063792, 16777216, 1835008, 688128, 680960, 1630720, 8972544, 104510336, 2012388736
Offset: 1
Examples
1; 2, 2; 6, 6, 12; 32, 24, 48, 152; 320, 160, 240, 760, 3640;
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7.
Links
Crossrefs
Cf. A070166.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)- add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n) end: T:= (n, k)-> binomial(n, k)*k*b(k)*2^((n-k)*(n-k-1)/2): seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 26 2013
-
Mathematica
nn = 10; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g], {x, 0, nn}], x], 1]; Table[ Table[Binomial[n, k] k a[[k]] 2^Binomial[n - k, 2], {k, 1, n}], {n, 1, 7}] // Grid
Comments