A228364 G.f.: x^2*(x+1)^2/(x^3+x^2-1)^2.
0, 0, 1, 2, 3, 6, 9, 14, 22, 32, 48, 70, 101, 146, 208, 296, 419, 590, 829, 1160, 1619, 2254, 3130, 4338, 6000, 8284, 11419, 15716, 21600, 29648, 40645, 55658, 76135, 104042, 142045, 193758, 264078, 359636, 489408, 665538, 904449, 1228342, 1667216, 2261592
Offset: 0
References
- A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Equation (3.11). - N. J. A. Sloane, Jan 11 2022
Links
- Index entries for linear recurrences with constant coefficients, signature (0,2,2,-1,-2,-1).
Programs
-
Mathematica
c[k_, l_, m_] := Sum[(-1)^i Binomial[k - 1 - i*l, m - 1] Binomial[m, i], {i, 0, Floor[(k - m)/l]}]; a[L_, l_, m_] := Sum[Binomial[m + 1, m + 1 - j]*c[L - l*m, l - 1, j], {j, 0, m + 1}]; sa[L_, l_] := Sum[j*a[L, l, j], {j, 1, Ceiling[L/l]}]; Table[sa[j, 2], {j, 0, 30}] (* or *) CoefficientList[Series[x^2 (x + 1)^2/(x^3 + x^2 - 1)^2, {x, 0, 100}], x] LinearRecurrence[{0,2,2,-1,-2,-1},{0,0,1,2,3,6},50] (* Harvey P. Dale, Dec 31 2018 *) P[0] = 1; P[1] = 0; P[2] = 0; P[n_] := P[n] = P[n - 2] + P[n - 3]; Table[Sum[P[i + 4]*P[n -i + 4], {i, 1, n}], {n, 0, 20}] (* Rigoberto Florez, Oct 13 2019 *)
Formula
G.f.: x^2*(x+1)^2/(x^3+x^2-1)^2.
a(0)=a(1)=0, a(2)=1, a(3)=2, a(4)=3, a(5)=6; for n>5, a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 2*a(n-5) - a(n-6).
a(n) = Sum_{i=1..n} P(i+4)*P(n-i+4), where P(n) = A000931(n). - Rigoberto Florez, Oct 13 2019
Extensions
Edited by N. J. A. Sloane, Nov 06 2019, replacing not very clear original definition by simple generating function, rewriting original definition using comments from Rigoberto Florez, and moving it to comments.
Comments