cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228577 The number of 1-length gaps in all possible covers of n-length line by 2-length segments.

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 6, 7, 12, 17, 24, 36, 50, 72, 102, 143, 202, 282, 394, 549, 762, 1057, 1462, 2019, 2784, 3832, 5268, 7232, 9916, 13581, 18580, 25394, 34674, 47303, 64478, 87819, 119520, 162549, 220920, 300060, 407302, 552552, 749186, 1015259, 1375134
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 26 2013

Keywords

Comments

2-gaps must be filled, so, for example, xxoo doesn't count for n=4. - Jon Perry, Nov 18 2014

Examples

			For n=6 we have xxoxxo, oxxxxo and oxxoxx, so a(6) = number of o's = 6. - _Jon Perry_, Nov 18 2014
		

References

  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Eqn. (3.13). - N. J. A. Sloane, Jan 11 2022

Crossrefs

Programs

  • Magma
    I:=[0,1,0,2,2,3]; [n le 6 select I[n] else 2*Self(n-2)+2*Self(n-3)-Self(n-4)-2*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Nov 18 2014
  • Maple
    A228577 := proc(n) coeftayl(x/(x^3+x^2-1)^2, x=0, n); end proc: seq(A228577(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2014
  • Mathematica
    CoefficientList[Series[x/(x^3 + x^2 - 1)^2, {x, 0, 100}], x]

Formula

For n>1, a(n) = n * A228361(n) - 2 * A228364(n).
G.f.: x/(x^3 + x^2 - 1)^2, convolution of A182097 by itself.
a(n) = 2*a(n-2) +2*a(n-3) -a(n-4) -2*a(n-5) -a(n-6) for n>5.
(n-1)*a(n) - (n+1)*a(n-2) - (n+2)*a(n-3) = 0 for n>2. - Michael D. Weiner, Nov 18 2014

A245963 Triangle read by rows: T(n,k) is the number of maximal hypercubes Q(p) in the Fibonacci cube Gamma(n) (i.e., Q(p) is an induced subgraph of Gamma(n) that is not a subgraph of a subgraph of Gamma(n) that is isomorphic to the hypercube Q(p+1)).

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 3, 1, 0, 0, 1, 4, 0, 0, 0, 6, 1, 0, 0, 0, 4, 5, 0, 0, 0, 1, 10, 1, 0, 0, 0, 0, 10, 6, 0, 0, 0, 0, 5, 15, 1, 0, 0, 0, 0, 1, 20, 7, 0, 0, 0, 0, 0, 15, 21, 1, 0, 0, 0, 0, 0, 6, 35, 8, 0, 0, 0, 0, 0, 1, 35, 28, 1, 0, 0, 0, 0, 0, 0, 21, 56, 9, 0, 0, 0, 0, 0, 0, 7, 70, 36, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 13 2014

Keywords

Comments

The nonzero entries in columns 0,1,2,... are rows 0,2,3,... of the Pascal triangle.
Row n contains 1+ceiling(n/2) entries.
Sum of entries in row n = A000931(n+6) (the Padovan sequence).
Sum_{k>=0}k*T(n,k) = A228364(n+1).

Examples

			Row 3 is 0,1,1. Indeed, the Fibonacci cube Gamma(3) is a square with an additional pendant edge attached to one of its vertices; the pendant edge is a maximal Q(1) and the square is a maximal Q(2).
Triangle starts:
  1;
  0, 1;
  0, 2;
  0, 1, 1;
  0, 0, 3;
  0, 0, 3, 1;
  0, 0, 1, 4;
  0, 0, 0, 6, 1;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: binomial(1+k, n-2*k+1) end proc: for n from 0 to 20 do seq(T(n, k), k = 0 .. (n+1)*(1/2)) end do; # yields sequence in triangular form
  • Mathematica
    Table[Binomial[k + 1, n - 2 k + 1], {n, 0, 17}, {k, 0, Ceiling[n/2]}] // Flatten (* Michael De Vlieger, Jul 16 2017 *)

Formula

T(n,k) = binomial(k+1,n-2*k+1).
G.f.: (1+t*z*(1+z))/(1-t*(1+z)*z^2).

A228494 The number of 3-length segments in all possible covers of L-length line by these segments with allowed gaps < 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 7, 12, 17, 24, 36, 54, 77, 108, 155, 222, 312, 436, 612, 858, 1194, 1656, 2298, 3184, 4397, 6060, 8346, 11480, 15762, 21612, 29607, 40518, 55385, 75632, 103197, 140692, 191647, 260856, 354814, 482290, 655131, 889364, 1206649, 1636218
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 23 2013

Keywords

Comments

Related with the number of all possible covers of L-length line segment by 3-length line segments with allowed gaps < 3 (A228362).

Crossrefs

Programs

  • Mathematica
    c[k_, l_, m_] :=  Sum[(-1)^i Binomial[k - 1 - i*l, m - 1] Binomial[m, i], {i, 0,     Floor[(k - m)/l]}]; a[L_, l_, m_] :=  Sum[Binomial[m + 1, m + 1 - j]*c[L - l*m, l - 1, j], {j, 0, m + 1}]; sa[L_, l_] := Sum[j*a[L, l, j], {j, 1, Ceiling[L/l]}];Table[sa[j, 3], {j, 0, 100}]
    CoefficientList[Series[x^3(x^2+x+1)^2/(x^5+x^4+x^3-1)^2,{x, 0, 100}], x]
    LinearRecurrence[{0,0,2,2,2,-1,-2,-3,-2,-1},{0,0,0,1,2,3,4,7,12,17},50] (* Harvey P. Dale, May 21 2025 *)
  • PARI
    concat([0,0,0], Vec(x^3*(x^2+x+1)^2/((x^2+1)*(x^3+x^2-1))^2+O(x^66))) \\ Joerg Arndt, Aug 23 2013

Formula

G.f.: x^3*(x^2+x+1)^2/((x^2+1)*(x^3+x^2-1))^2.
Showing 1-3 of 3 results.