cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228404 The number of complete binary trees with bicolored twigs. A twig is a vertex with one child on the boundary and the other child having no descendants.

Original entry on oeis.org

1, 2, 8, 24, 76, 249, 836, 2860, 9932, 34918, 124032, 444448, 1604664, 5831765, 21316860, 78319140, 289064460, 1071275370, 3984871440, 14872552560, 55678270440, 209027020410, 786750047304, 2968257334104, 11223268563896, 42522737574604, 161415556062656, 613813414982656
Offset: 0

Views

Author

Louis Shapiro, Aug 21 2013

Keywords

Examples

			For n = 2 there are two complete binary trees. Both consist of two twigs so can be colored 4 ways each.
		

Crossrefs

Without the bicoloring A228403 is the result.
Cf. A000108.

Programs

  • Magma
    [1,2] cat [Catalan(n+2) -2*Catalan(n+1) +2*Catalan(n): n in [2..30]]; // G. C. Greubel, May 03 2021
    
  • Mathematica
    Table[If[n<2, n+1, CatalanNumber[n+2] -2*CatalanNumber[n+1] +2*CatalanNumber[n]], {n,0,30}] (* G. C. Greubel, May 03 2021 *)
  • PARI
    x = 'x + O('x^66);
    C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
    gf = 1 - x + 2*x*C^2 + x*C^4;
    Vec(gf) \\ Joerg Arndt, Aug 22 2013
    
  • Sage
    [1,2]+[catalan_number(n+2) -2*catalan_number(n+1) +2*catalan_number(n) for n in (2..30)] # G. C. Greubel, May 03 2021

Formula

G.f.: 1 - x + 2*x*C^2 + x*C^4 where C is the g.f. for the Catalan numbers A000108.
Conjecture: -5*(n+3)*(n-2)*a(n) +5*(-n^2-n+18)*a(n-1) +5*(-n^2-n+48)*a(n-2) +(-5*n^2+20029*n+720)*a(n-3) +(-5*n^2-104153*n+186654)*
a(n-4) +(-5*n^2 +130153*n -508806)*a(n-5) +13650*(2*n-11)*(n-7)*a(n-6) = 0. - R. J. Mathar, Aug 08 2015
From G. C. Greubel, May 03 2021: (Start)
a(n) = C(n+2) - 2*C(n+1) + 2*C(n) with a(0) = 1, a(1) = 2, and C(n) = A000108(n).
E.g.f.: (-x^2*(1+x) + 2*exp(2*x)*(x*(1+x)*BesselI(0, 2*x) - (1+x^2)*BesselI(1, 2*x)))/x^2. (End)