cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228432 Sum_{i=1..floor(prime(n)/4)} floor(sqrt(i*prime(n))).

Original entry on oeis.org

0, 0, 2, 2, 7, 14, 24, 25, 37, 70, 71, 114, 140, 143, 170, 234, 274, 310, 357, 399, 444, 498, 552, 660, 784, 850, 856, 926, 990, 1064, 1310, 1395, 1564, 1574, 1850, 1859, 2054, 2173, 2277, 2494, 2623, 2730, 2986, 3104, 3234, 3246, 3656, 4085, 4235, 4370
Offset: 1

Views

Author

Michel Marcus, Nov 11 2013

Keywords

Comments

If p = prime(n) in A002145 and n>3, or said differently, if n in A080148 and n>1, then a(n) = A081115(n).

Examples

			For n=7, p=17 and a(7) = floor(sqrt(17)) + floor(sqrt(34)) + floor(sqrt(51)) + floor(sqrt(68)) = 4+5+7+8 = 24.
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; Sum[Floor[Sqrt[i*p]], {i, Floor[p/4]}], {n, 100}] (* T. D. Noe, Nov 13 2013 *)
  • PARI
    a(n) = p = prime(n); sum(i=1, p\4, sqrtint(i*p));