A228553 Sum of the products formed by multiplying together the smaller and larger parts of each Goldbach partition of 2n.
0, 4, 9, 15, 46, 35, 82, 94, 142, 142, 263, 357, 371, 302, 591, 334, 780, 980, 578, 821, 1340, 785, 1356, 1987, 1512, 1353, 2677, 1421, 2320, 4242, 1955, 2803, 4362, 1574, 4021, 5298, 4177, 4159, 6731, 4132, 5593, 9808
Offset: 1
Keywords
Examples
a(5) = 46. 2*5 = 10 has two Goldbach partitions: (7,3) and (5,5). Taking the products of the larger and smaller parts of these partitions and adding, we get 7*3 + 5*5 = 46.
Links
Programs
-
Maple
with(numtheory); seq(sum( (2*k*i-i^2) * (pi(i)-pi(i-1)) * (pi(2*k-i)-pi(2*k-i-1)), i=2..k), k=1..70); # Alternative: f:= proc(n) local S; S:= select(t -> isprime(t) and isprime(2*n-t), [seq(i,i=3..n,2)]); add(t*(2*n-t),t=S) end proc: f(2):= 4: map(f, [$1..200]); # Robert Israel, Nov 29 2020
-
Mathematica
c[n_] := Boole[PrimeQ[n]]; a[n_] := Sum[c[i]*c[2n-i]*i*(2n-i), {i, 2, n}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 02 2023 *)
Formula
a(n) = Sum_{i=2..n} c(i) * c(2*n-i) * i * (2*n-i), where c = A010051.
a(n) = Sum_{k=(n^2-n+2)/2..(n^2+n-2)/2} c(A105020(k)) * A105020(k), where c = A064911. - Wesley Ivan Hurt, Sep 19 2021
Comments