cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228577 The number of 1-length gaps in all possible covers of n-length line by 2-length segments.

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 6, 7, 12, 17, 24, 36, 50, 72, 102, 143, 202, 282, 394, 549, 762, 1057, 1462, 2019, 2784, 3832, 5268, 7232, 9916, 13581, 18580, 25394, 34674, 47303, 64478, 87819, 119520, 162549, 220920, 300060, 407302, 552552, 749186, 1015259, 1375134
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 26 2013

Keywords

Comments

2-gaps must be filled, so, for example, xxoo doesn't count for n=4. - Jon Perry, Nov 18 2014

Examples

			For n=6 we have xxoxxo, oxxxxo and oxxoxx, so a(6) = number of o's = 6. - _Jon Perry_, Nov 18 2014
		

References

  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Eqn. (3.13). - N. J. A. Sloane, Jan 11 2022

Crossrefs

Programs

  • Magma
    I:=[0,1,0,2,2,3]; [n le 6 select I[n] else 2*Self(n-2)+2*Self(n-3)-Self(n-4)-2*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Nov 18 2014
  • Maple
    A228577 := proc(n) coeftayl(x/(x^3+x^2-1)^2, x=0, n); end proc: seq(A228577(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2014
  • Mathematica
    CoefficientList[Series[x/(x^3 + x^2 - 1)^2, {x, 0, 100}], x]

Formula

For n>1, a(n) = n * A228361(n) - 2 * A228364(n).
G.f.: x/(x^3 + x^2 - 1)^2, convolution of A182097 by itself.
a(n) = 2*a(n-2) +2*a(n-3) -a(n-4) -2*a(n-5) -a(n-6) for n>5.
(n-1)*a(n) - (n+1)*a(n-2) - (n+2)*a(n-3) = 0 for n>2. - Michael D. Weiner, Nov 18 2014