A228577 The number of 1-length gaps in all possible covers of n-length line by 2-length segments.
0, 1, 0, 2, 2, 3, 6, 7, 12, 17, 24, 36, 50, 72, 102, 143, 202, 282, 394, 549, 762, 1057, 1462, 2019, 2784, 3832, 5268, 7232, 9916, 13581, 18580, 25394, 34674, 47303, 64478, 87819, 119520, 162549, 220920, 300060, 407302, 552552, 749186, 1015259, 1375134
Offset: 0
Examples
For n=6 we have xxoxxo, oxxxxo and oxxoxx, so a(6) = number of o's = 6. - _Jon Perry_, Nov 18 2014
References
- A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Eqn. (3.13). - N. J. A. Sloane, Jan 11 2022
Links
- D. Birmajer, J. Gil and M. Weiner, Linear recurrence sequences and their convolutions via Bell polynomials, arXiv:1405.7727 [math.CO], 2014 and J. Int. Seq. 18 (2015) # 15.1.2.
- Index entries for linear recurrences with constant coefficients, signature (0,2,2,-1,-2,-1).
Programs
-
Magma
I:=[0,1,0,2,2,3]; [n le 6 select I[n] else 2*Self(n-2)+2*Self(n-3)-Self(n-4)-2*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Nov 18 2014
-
Maple
A228577 := proc(n) coeftayl(x/(x^3+x^2-1)^2, x=0, n); end proc: seq(A228577(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2014
-
Mathematica
CoefficientList[Series[x/(x^3 + x^2 - 1)^2, {x, 0, 100}], x]
Formula
G.f.: x/(x^3 + x^2 - 1)^2, convolution of A182097 by itself.
a(n) = 2*a(n-2) +2*a(n-3) -a(n-4) -2*a(n-5) -a(n-6) for n>5.
(n-1)*a(n) - (n+1)*a(n-2) - (n+2)*a(n-3) = 0 for n>2. - Michael D. Weiner, Nov 18 2014
Comments