cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228609 Partial sums of the cubes of the tribonacci sequence A000073.

Original entry on oeis.org

0, 1, 2, 10, 74, 417, 2614, 16438, 101622, 633063, 3941012, 24511836, 152535900, 949133883, 5905611508, 36746590964, 228646935796, 1422699232325, 8852413871022, 55082039340022, 342734883853750, 2132586518002125
Offset: 0

Views

Author

R. J. Mathar, Dec 18 2013

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (-1 + 3 x + 11 x^3 - 5 x^4 + x^5 - 3 x^6 + x^7 + 5 x^2)/((x^3 - 5 x^2 + 7 x - 1) (x^6 + 4 x^5 + 11 x^4 + 12 x^3 + 11 x^2 + 4 x + 1) (x - 1)^2), {x, 0, 21}], x] (* Michael De Vlieger, Jan 12 2022 *)
    Accumulate[LinearRecurrence[{1,1,1},{0,1,1},30]^3]  (* or *) LinearRecurrence[ {5,5,25,-58,26,-42,54,-13,1,-3,1},{0,1,2,10,74,417,2614,16438,101622,633063,3941012},30] (* Harvey P. Dale, Sep 11 2022 *)
  • PARI
    T(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
    a(n) = sum(k=1, n, T(k)^3); \\ Michel Marcus, Jan 12 2022

Formula

a(n) = a(n-1) + (A000073(n))^3.
G.f.: x*(-1+3*x+11*x^3-5*x^4+x^5-3*x^6+x^7+5*x^2) / ( (x^3-5*x^2+7*x-1) *(x^6+4*x^5+11*x^4+12*x^3+11*x^2+4*x+1) *(x-1)^2 )