A228725 Decimal expansion of the generalized Euler constant gamma(1,2).
6, 3, 5, 1, 8, 1, 4, 2, 2, 7, 3, 0, 7, 3, 9, 0, 8, 5, 0, 1, 1, 8, 7, 2, 1, 0, 5, 7, 7, 0, 2, 8, 9, 4, 9, 9, 5, 5, 8, 8, 2, 9, 7, 3, 5, 1, 5, 0, 0, 8, 9, 4, 2, 6, 4, 6, 3, 2, 2, 3, 6, 2, 2, 1, 8, 9, 1, 3, 0, 6, 7, 4, 3, 7, 3, 6, 7, 9, 6, 9, 3, 2, 7, 1
Offset: 0
Examples
0.63518142273073908501187210577028949955882973515008942646322...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- M. L. Glasser, A note on Beukers's and related integrals, Amer. Math. Monthly 126(4) (2019), 361-363.
- J. C. Lagarias, Euler's constant: Euler's work and modern developments, arXiv:1303.1856 [math.NT], 2013. See Section 3.8.
- D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), 125-142.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma + Log(2))/2; // G. C. Greubel, Aug 27 2018
-
Maple
(gamma+log(2))/2 ; evalf(%) ;
-
Mathematica
RealDigits[(EulerGamma+Log[2])/2,10,120][[1]] (* Harvey P. Dale, Dec 26 2013 *)
-
PARI
(Euler+log(2))/2 \\ Charles R Greathouse IV, Jul 21 2015
Formula
Equals lim_{x->oo} ((Sum_{n=1..x, n odd} 1/n) - log(x)/2).
From Amiram Eldar, Jun 30 2020: (Start)
Equals -Integral_{x=0..1} log(log(1/x))*x dx.
Equals -Integral_{x=0..oo} exp(-2*x)*log(x) dx. (End)
Equals Integral_{x=0..1, y=0..1} log(-log(x*y))*x*y/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to one of Amiram Eldar's integrals.) - Petros Hadjicostas, Jun 30 2020
Comments