cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228725 Decimal expansion of the generalized Euler constant gamma(1,2).

Original entry on oeis.org

6, 3, 5, 1, 8, 1, 4, 2, 2, 7, 3, 0, 7, 3, 9, 0, 8, 5, 0, 1, 1, 8, 7, 2, 1, 0, 5, 7, 7, 0, 2, 8, 9, 4, 9, 9, 5, 5, 8, 8, 2, 9, 7, 3, 5, 1, 5, 0, 0, 8, 9, 4, 2, 6, 4, 6, 3, 2, 2, 3, 6, 2, 2, 1, 8, 9, 1, 3, 0, 6, 7, 4, 3, 7, 3, 6, 7, 9, 6, 9, 3, 2, 7, 1
Offset: 0

Views

Author

R. J. Mathar, Aug 31 2013

Keywords

Comments

The complement (A239097) is gamma(0,2) = lim_{x->oo} ((Sum_{n=1..x, n even} 1/n) - log(x)/2) = (A001620 - A002162)/2 = -0.05796575... - R. J. Mathar, Sep 06 2013

Examples

			0.63518142273073908501187210577028949955882973515008942646322...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField();
    (EulerGamma + Log(2))/2; // G. C. Greubel, Aug 27 2018
  • Maple
    (gamma+log(2))/2 ; evalf(%) ;
  • Mathematica
    RealDigits[(EulerGamma+Log[2])/2,10,120][[1]] (* Harvey P. Dale, Dec 26 2013 *)
  • PARI
    (Euler+log(2))/2 \\ Charles R Greathouse IV, Jul 21 2015
    

Formula

Equals lim_{x->oo} ((Sum_{n=1..x, n odd} 1/n) - log(x)/2).
Equals (A001620 + A002162)/2.
From Amiram Eldar, Jun 30 2020: (Start)
Equals -Integral_{x=0..1} log(log(1/x))*x dx.
Equals -Integral_{x=0..oo} exp(-2*x)*log(x) dx. (End)
Equals Integral_{x=0..1, y=0..1} log(-log(x*y))*x*y/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to one of Amiram Eldar's integrals.) - Petros Hadjicostas, Jun 30 2020
Equals -(psi(1/2) + log(2))/2 = (A020759 - A002162)/2. - Amiram Eldar, Jan 07 2024