A228836 Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.
1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1
Offset: 0
Examples
The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins: 1; 1, 1; 1, 4, 1; 1, 36, 36, 1; 1, 560, 1820, 560, 1; 1, 12650, 177100, 177100, 12650, 1; 1, 376992, 30260340, 94143280, 30260340, 376992, 1; 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1; ...
Links
- Paul D. Hanna, Rows 0..30 as a flattened table of n, a(n) for n = 0..495
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=Binomial[n^2, (n-k)*k]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Aug 02 2025 *)
-
PARI
{T(n,k)=binomial(n^2, (n-k)*k)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))