cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228836 Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Examples

			The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:
  1;
  1, 1;
  1, 4, 1;
  1, 36, 36, 1;
  1, 560, 1820, 560, 1;
  1, 12650, 177100, 177100, 12650, 1;
  1, 376992, 30260340, 94143280, 30260340, 376992, 1;
  1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;
  ...
		

Crossrefs

Cf. A207136 (row sums), A228837 (antidiagonal sums), A070780 (column 1).
Cf. related triangles: A228900(exp), A209330, A226234, A228832.

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n^2, (n-k)*k]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Aug 02 2025 *)
  • PARI
    {T(n,k)=binomial(n^2, (n-k)*k)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))