cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228889 a(n) = 3*n*(3*n + 1)*(3*n + 2).

Original entry on oeis.org

60, 336, 990, 2184, 4080, 6840, 10626, 15600, 21924, 29760, 39270, 50616, 63960, 79464, 97290, 117600, 140556, 166320, 195054, 226920, 262080, 300696, 342930, 388944, 438900, 492960, 551286, 614040, 681384, 753480, 830490, 912576, 999900, 1092624, 1190910
Offset: 1

Views

Author

Peter Bala, Sep 09 2013

Keywords

Comments

Related sequences are A054776 and A097321.

Crossrefs

Programs

  • Magma
    [3*n*(3*n+1)*(3*n+2): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
  • Maple
    seq(3*n*(3*n+1)*(3*n+2), n = 1..35);
  • Mathematica
    CoefficientList[Series[6 (10 + 16 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 10 2013 *)
    Table[Times@@(3n+{0,1,2}),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{60,336,990,2184},40] (* Harvey P. Dale, Dec 20 2023 *)

Formula

a(n) = 3*n*(3*n + 1)*(3*n + 2) = 6*binomial(3*n + 2,3) = 6*A228888(n).
a(-n) = - A054776(n).
G.f.: 6*x*(10 + 16*x + x^2)/(1 - x)^4 = 60*x + 336*x^2 + 990*x^3 + ....
Sum {n >= 1} 1/a(n) = 3/4 - log(3)/4 - 1/12*sqrt(3)*Pi;
Sum {n >= 1} (-1)^n/a(n) = 3/4 - 2/3*log(2) - 1/18*sqrt(3)*Pi.