cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228960 a(n) = [x^n] (1 + x + x^3 + x^4)^n.

Original entry on oeis.org

1, 1, 4, 17, 51, 136, 393, 1233, 3865, 11851, 36301, 112520, 351352, 1098189, 3433704, 10758609, 33794505, 106344793, 335061790, 1056924667, 3338026857, 10554163533, 33402840615, 105809430024, 335444908176, 1064268538776, 3379009937161, 10735253448349, 34127137228747
Offset: 1

Views

Author

Paul D. Hanna, Sep 10 2013

Keywords

Comments

Equals the Logarithmic derivative of A198951, where the g.f. of A198951 satisfies: G(x) = (1 + x*G(x))*(1 + x^3*G(x)^3).

Examples

			L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 51*x^5/5 + 136*x^6/6 +...
Given G(x) = exp(L(x)), which is the g.f. of A198951:
G(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 39*x^6 + 99*x^7 + 271*x^8 + 763*x^9 + 2146*x^10 +...+ A198951(n)*x^n +...
then the l.g.f. L(x) satisfies the series:
L(x) = (1 + x^2*G(x)^2)*x
+ (1 + 2^2*x^2*G(x)^2 + x^4*G(x)^4)*x^2/2
+ (1 + 3^2*x^2*G(x)^2 + 3^2*x^4*G(x)^4 + x^6*G(x)^6)*x^3/3
+ (1 + 4^2*x^2*G(x)^2 + 6^2*x^4*G(x)^4 + 4^2*x^6*G(x)^6 + x^8*G(x)^8)*x^4/4
+ (1 + 5^2*x^2*G(x)^2 + 10^2*x^4*G(x)^4 + 10^2*x^6*G(x)^6 + 5^2*x^8*G(x)^8 + x^10*G(x)^10)*x^5/5 +...
The table of coefficients in (1 + x + x^3 + x^4)^n begins:
n=1: [1,(1), 0,  1,   1,   0,   0,    0,    0,    0,    0, ...];
n=2: [1, 2, (1), 2,   4,   2,   1,    2,    1,    0,    0, ...];
n=3: [1, 3,  3, (4),  9,   9,   6,    9,    9,    4,    3, ...];
n=4: [1, 4,  6,  8, (17), 24,  22,   28,   36,   28,   22, ...];
n=5: [1, 5, 10, 15,  30, (51), 60,   75,  105,  110,  100, ...];
n=6: [1, 6, 15, 26,  51,  96,(136), 180,  261,  326,  345, ...];
n=7: [1, 7, 21, 42,  84, 168, 273, (393), 588,  819,  987, ...];
n=8: [1, 8, 28, 64, 134, 280, 504,  792,(1233),1848, 2472, ...];
n=9: [1, 9, 36, 93, 207, 450, 876, 1494, 2439,(3865),5616, ...]; ...
the terms in parenthesis forms the initial terms of this sequence.
		

Crossrefs

Programs

  • Maple
    A228960 := proc(n)
        (1+x+x^3+x^4)^n ;
        coeftayl(%,x=0,n) ;
    end proc: # R. J. Mathar, Sep 15 2013
  • Mathematica
    Table[Coefficient[(1 + x + x^3 + x^4)^n,x,n],{n,1,30}] (* Vaclav Kotesovec, Dec 27 2013 *)
    Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n, -n/3}, {1/3, 2/3, 1}, 1], {n, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)
  • PARI
    {a(n)=polcoeff((1+x+x^3+x^4+x*O(x^n))^n, n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1/x*serreverse(x/(1+x+x^3+x^4+x*O(x^n)))); n*polcoeff(log(A), n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=x); for(i=1, n, A=sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^(2*j)*exp(2*j*A+x*O(x^n)))*x^m/m)); n*polcoeff(A, n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=1, n, (1-x^2*exp(2*A))^(2*m+1)*sum(j=0, n\2, binomial(m+j, j)^2*x^(2*j)*exp(2*j*A+x*O(x^n)))*x^m/m)); n*polcoeff(A, n, x)}
    for(n=1,30,print1(a(n),", "))

Formula

L.g.f. L(x) satisfies:
(1) L(x) = log( (1/x)*Series_Reversion(x/((1+x)*(1+x^3))) ).
(2) L(x) = Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * exp(2*k*L(x)).
(3) L(x) = Sum_{n>=1} x^n/n * (1 - x^2*exp(2*L(x)))^(2*n+1) * Sum_{k>=0} C(n+k,k)^2 * x^(2*k) * exp(2*k*L(x)).
Conjecture: 3*n*(1661*n-1820) *(3*n-1) *(3*n-2) *a(n) +(1927258*n^4 -17091925*n^3 +50171975*n^2 -59448794*n +24442440) *a(n-1) +12*(-705605*n^4 +6363374*n^3 -20228575*n^2 +27219817*n -13185456) *a(n-2) +54*(n-2) *(250934*n^3 -1892927*n^2 +4367836*n -3055963) *a(n-3) -486*(n-2)*(n-3) *(26090*n-34343) *(2*n-7) *a(n-4)=0. - R. J. Mathar, Sep 15 2013.
Recurrence (of order 3): 3*n*(3*n-2)*(3*n-1)*(238*n^3 - 1302*n^2 + 2285*n - 1293)*a(n) = 2*(13328*n^6 - 92904*n^5 + 249452*n^4 - 329211*n^3 + 224408*n^2 - 74649*n + 9360)*a(n-1) - 18*(n-1)*(2380*n^5 - 15400*n^4 + 36710*n^3 - 39398*n^2 + 18345*n - 2880)*a(n-2) + 162*(n-2)*(n-1)*(2*n-5)*(238*n^3 - 588*n^2 + 395*n - 72)*a(n-3). - Vaclav Kotesovec, Dec 27 2013
a(n) ~ c*d^n/sqrt(n), where d = 1/81*((2144134 + 520506*sqrt(17))^(2/3) - 2036 + 112*(2144134 + 520506*sqrt(17))^(1/3))*(2144134 + 520506 * sqrt(17))^(-1/3) = 3.23407602060970245... is the root of the equation -324 + 180*d - 112*d^2 + 27*d^3 = 0 and c = 1/102*sqrt(17)*sqrt((34102 + 8262*sqrt(17))^(1/3)*((34102+8262*sqrt(17))^(2/3) + 136 + 136*(34102 + 8262*sqrt(17))^(1/3)))/((34102 + 8262*sqrt(17))^(1/3)*sqrt(Pi)) = 0.3061270429417747... - Vaclav Kotesovec, Dec 27 2013
From Peter Bala, Jun 15 2015: (Start)
a(n) = [x^(3*n)](1 + x + x^3 + x^4)^n.
a(n) = Sum_{k = 0..floor(n/3)} binomial(n,k)*binomial(n,3*k). Applying Maple's sumrecursion command to this formula gives the above recurrence of Kotesovec. (End)
a(n) = hypergeom([1/3-n/3, 2/3-n/3, -n, -n/3], [1/3, 2/3, 1], 1). - Vladimir Reshetnikov, Oct 04 2016
From Peter Bala, Apr 15 2023: (Start)
Conjecture 1: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A350383.
Conjecture 2: let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where both g(x) and h(x) are finite products of cyclotomic polynomials. Then the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)