cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A198951 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^3).

Original entry on oeis.org

1, 1, 1, 2, 6, 16, 39, 99, 271, 763, 2146, 6062, 17359, 50337, 147057, 431874, 1275273, 3786649, 11298031, 33846202, 101762937, 306997821, 929038518, 2819426688, 8578433304, 26163061776, 79970186791, 244938841096, 751646959402, 2310683396056, 7115199919151
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

a(n) is also the number of rooted labeled trees on n nodes such that each node has 0, 1, 3, or 4 children. - Patrick Devlin, Mar 04 2012

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 39*x^6 + 99*x^7 + ...
Related expansions:
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 36*x^4 + 105*x^5 + 292*x^6 + ...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 67*x^4 + 200*x^5 + 582*x^6 + ...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^2)*x + (1 + 2^2*x^2*A(x)^2 + x^4*A(x)^4)*x^2/2 +
(1 + 3^2*x^2*A(x)^2 + 3^2*x^4*A(x)^4 + x^6*A(x)^6)*x^3/3 +
(1 + 4^2*x^2*A(x)^2 + 6^2*x^4*A(x)^4 + 4^2*x^6*A(x)^6 + x^8*A(x)^8)*x^4/4 +
(1 + 5^2*x^2*A(x)^2 + 10^2*x^4*A(x)^4 + 10^2*x^6*A(x)^6 + 5^2*x^8*A(x)^8 + x^10*A(x)^10)*x^5/5 + ...
more explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 51*x^5/5 + 136*x^6/6 + 393*x^7/7 + 1233*x^8/8 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A=(1+x*A)*(1+x^3*A^3), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2012
  • Mathematica
    InverseSeries[ Series[ x/((1 + x)*(1 + x^3)), {x, 0, 31}], x] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    {a(n)=local(A=1/x*serreverse(x/(1+x+x^3+x^4+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1+x+x^3+x^4+x*O(x^n))^(n+1)/(n+1), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n,sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x^2*A^2)^(2*m+1)*sum(j=0, n\2, binomial(m+j, j)^2*x^(2*j)*(A^2+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}

Formula

G.f. satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion(x/((1+x)*(1+x^3))).
(3) a(n) = [x^n] (1 + x + x^3 + x^4)^(n+1) / (n+1).
(4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x^2*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^(2*k) * A(x)^(2*k) ).
D-finite with recurrence: 3*(n+1)*(3*n+2)*(3*n+4)*(119*n^3 - 210*n^2 + 73*n - 6)*a(n) = 2*(6664*n^6 - 1764*n^5 - 11585*n^4 + 426*n^3 + 4129*n^2 - 102*n - 288)*a(n-1) - 18*(n-1)*(1190*n^5 - 910*n^4 - 1937*n^3 + 895*n^2 + 606*n - 216)*a(n-2) + 162*(n-2)*(n-1)*(2*n-3)*(119*n^3 + 147*n^2 + 10*n - 24)*a(n-3). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ c*d^n/n^(3/2), where d = 1/81*((2144134+520506*sqrt(17))^(2/3)+112*(2144134+520506*sqrt(17))^(1/3)-2036)/(2144134+520506*sqrt(17))^(1/3) = 3.23407602060970245... is the root of the equation -324 + 180*d - 112*d^2 + 27*d^3 = 0 and c = 0.6286981954423757284622435... - Vaclav Kotesovec, Sep 09 2013
A(1/d) = 370/243 + (3*sqrt(17)/509 - 3070/123687)*(2144134+520506*sqrt(17))^(1/3) + (141*sqrt(17)/2072648 - 129529/503653464)*(2144134+520506*sqrt(17))^(2/3) = 2.053716618436594614948796... - Vaclav Kotesovec, Sep 10 2013
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1,k)* binomial(n + 1,n - 3*k). Applying Maple's sumrecursion command to this formula gives the above recurrence of Kotesovec.
More generally, the coefficient of x^n in A(x)^r equals r/(n + r)*Sum_{k = 0..floor(n/3)} binomial(n + r,k)*binomial(n + r,n - 3*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} A228960(n)*x^n/n), where A228960(n) = Sum_{k = 0..floor(n/3)} binomial(n,k)*binomial(n,3*k). Cf. A036765, A186241 and A200731. (End)

A350383 a(n) = [x^n] 1/(1 + x + x^2)^n.

Original entry on oeis.org

1, -1, 1, 2, -15, 49, -98, 48, 561, -2860, 8151, -12948, -9282, 149226, -594320, 1428952, -1448655, -5538975, 37450900, -122995950, 239589735, -37528755, -1886983020, 8939152560, -24579514050, 35197176924, 51580335366, -541312482256, 2033695030128, -4624358661240
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1): seq(simplify(a(n)), n = 0..30); # Peter Bala, Apr 17 2023
  • Mathematica
    a[n_] := Coefficient[Series[1/(1 + x + x^2)^n, {x, 0, n}], x, n]; Array[a, 30, 0] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1+k, k)*binomial(n, 3*k));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1+k,k) * binomial(n,3*k).
Recurrence: 3*(n-1)*n*(4*n - 7)*a(n) = -2*(n-1)*(28*n^2 - 63*n + 27)*a(n-1) - 3*(3*n - 5)*(3*n - 4)*(4*n - 3)*a(n-2). - Vaclav Kotesovec, Mar 18 2023
From Peter Bala, Apr 15 2023: (Start)
a(n) = (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A228960.
More generally, let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where g(x) and h(x) are both finite products of cyclotomic polynomials. Then we conjecture that the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)
From Peter Bala, Mar 11 2025: (Start)
G.f.: A(x) = 1 + x*d/dx(log(G(x)/x)), where G(x) = x - x^2 + x^3 - 4*x^5 + 14*x^6 - 30*x^7 + ... is the g.f. of A103779.
The following formulas hold for n >= 1:
a(n) = [x^n] T(2*n, (1 - x)/2), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = Sum_{k = 0..n} (-1)^(n+k) * n/(2*n-k) * binomial(2*n-k, k)*binomial(2*n-2*k, n).
a(n) = (1/2)*(-1)^n*binomial(2*n, n)*hypergeom([-n/2, (-n+1)/2], [-2*n+1], 4). Cf. A213684. (End)

A350407 a(n) = [x^n] 1/(1 + x + x^2 + x^3 + x^4)^n.

Original entry on oeis.org

1, -1, 1, -1, 1, 4, -35, 146, -447, 1133, -2464, 4355, -4355, -9296, 77078, -314636, 1006145, -2738565, 6398155, -12175809, 14621376, 14828330, -179236815, 786257460, -2625667395, 7412386254, -17983703880, 36057065030, -49553122730, -14585596720
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*hypergeom([-n/5, 1/5 - n/5, 2/5 - n/5, 3/5 - n/5, 4/5 - n/5, n], [1/5, 2/5, 3/5, 4/5, 1], 1): seq(simplify(a(n)), n = 0..30); # Peter Bala, Apr 16 2023
  • Mathematica
    a[n_] := Coefficient[Series[1/(1 + x + x^2 + x^3 + x^4)^n, {x, 0, n}], x, n]; Array[a, 30, 0] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1+k, k)*binomial(n, 5*k));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1+k,k) * binomial(n,5*k).
Recurrence: 125*(n-3)*(n-2)*(n-1)*n*(2*n - 7)*(3*n - 11)*(3*n - 8)*(6*n - 23)*(6*n - 17)*(6*n - 11)*a(n) = -50*(n-3)*(n-2)*(n-1)*(3*n - 11)*(6*n - 23)*(6*n - 17)*(576*n^4 - 4896*n^3 + 14402*n^2 - 16875*n + 6250)*a(n-1) - 30*(n-3)*(n-2)*(6*n - 23)*(6*n - 5)*(7884*n^6 - 123516*n^5 + 791601*n^4 - 2652565*n^3 + 4894096*n^2 - 4707500*n + 1842500)*a(n-2) - 2*(n-3)*(3*n - 5)*(6*n - 11)*(6*n - 5)*(60192*n^6 - 1113552*n^5 + 8528546*n^4 - 34608379*n^3 + 78470893*n^2 - 94255700*n + 46855500)*a(n-3) - 5*(2*n - 5)*(3*n - 8)*(3*n - 5)*(5*n - 19)*(5*n - 18)*(5*n - 17)*(5*n - 16)*(6*n - 17)*(6*n - 11)*(6*n - 5)*a(n-4). - Vaclav Kotesovec, Mar 18 2023
From Peter Bala, Apr 16 2023: (Start)
a(n) = (-1)^n*hypergeom([-n/5, 1/5 - n/5, 2/5 - n/5, 3/5 - n/5, 4/5 - n/5, n], [1/5, 2/5, 3/5, 4/5, 1], 1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 3. (End)

A362408 a(n) = [x^n] (F(x)/F(-x))^n where F(x) = (1 + x)*(1 + x^3).

Original entry on oeis.org

1, 2, 8, 44, 256, 1502, 8912, 53510, 324352, 1980332, 12160008, 75015162, 464566144, 2886488906, 17985045464, 112333392044, 703119387648, 4409231140086, 27696141476336, 174229516043630, 1097501783152256, 6921721148337452, 43701895245221848
Offset: 0

Views

Author

Peter Bala, Apr 18 2023

Keywords

Comments

Compare with A228960(n) = [x^n] F(x)^n.
Let k and m be positive integers and let f(x) be a finite product of cyclotomic polynomials. Define b(n) = [x^(k*n)] (f(x)/f(-x))^(m*n). Then we conjecture that the supercongruences a(p) == a(1) (mod p^3) and, for n >= 2, a(n*p) == a(n) (mod p^2) hold for all primes p, with a finite number of exceptions depending on f(x).
The present sequence is the case k = m = 1 and f(x) = (1 + x)*(1 + x^3) = C(2,x)^2 * C(6,x), where C(n,x) denotes the n-th cyclotomic polynomial. See A002003 for the case k = m = 1 and f(x) = (1 + x).

Crossrefs

Programs

  • Maple
    F(x) := (1 + x)*(1 + x^3): G(x) := taylor(F(x)/F(-x),x = 0, 50); seq(coeftayl(G(x)^n, x = 0, n), n = 0..50);

Formula

Conjectures: 1) the supercongruence a(p) == 2 (mod p^3) holds for all primes p >= 5 (checked up to p = 47).
2) for n >= 2, the supercongruence a(n*p) == a(n) (mod p^2) holds for all primes p >= 5.

A378407 a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(n+2*k,n-3*k).

Original entry on oeis.org

1, 1, 1, 4, 25, 106, 352, 1114, 3865, 14539, 54886, 201763, 732568, 2679535, 9917818, 36903049, 137265337, 510201961, 1898730307, 7082472358, 26468394430, 99026247688, 370771000975, 1389387381691, 5211329801272, 19564292736706, 73504888190371, 276350941918741
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Cf. A228960.

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n, k)*binomial(n+2*k, n-3*k));

Formula

a(n) = [x^n] (1 + x + x^3 * (1 + x)^3)^n.
Showing 1-5 of 5 results.