cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228994 Total sum of the 4th powers of lengths of ascending runs in all permutations of [n].

Original entry on oeis.org

0, 1, 18, 152, 1110, 8254, 66050, 578466, 5557246, 58381646, 667481754, 8262618730, 110195259446, 1576108225446, 24075493095346, 391282065519074, 6742907753730030, 122830141805635966, 2358555332361509066, 47617194132209848026, 1008436738991020480294
Offset: 0

Views

Author

Alois P. Heinz, Sep 10 2013

Keywords

Crossrefs

Column k=4 of A229001.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [0, 1, 18][n+1],
          ((12*n^3-42*n^2+38*n+7)*a(n-1)-(n-1)*(6*n^3-12*n^2+n+14)*a(n-2)
           +(n-1)*(n-2)*(6*n^2-12*n+7)*a(n-3))/(6*n^2-24*n+25))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := With[{k = 4}, Sum[If[n==t, 1, (n!/(t+1)!)(t(n-t+1)+1-((t+1)(n-t)+1)/(t+2))] t^k, {t, 1, n}]];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz in A229001 *)

Formula

E.g.f.: (exp(x)*(12*x^2-12*x+14)-x-14)/(x-1)^2.
a(n) ~ n! * (14*exp(1)-15)*n. - Vaclav Kotesovec, Sep 12 2013