A229027 Numbers k such that k/rad(k) equals the greatest prime dividing k.
4, 9, 18, 25, 49, 50, 75, 98, 121, 147, 150, 169, 242, 245, 289, 294, 338, 361, 363, 490, 507, 529, 578, 605, 722, 726, 735, 841, 845, 847, 867, 961, 1014, 1058, 1083, 1183, 1210, 1369, 1445, 1470, 1587, 1681, 1682, 1690, 1694, 1734, 1805, 1815, 1849, 1859
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory) :for n from 2 to 2000 do:x:=factorset(n):n1:=nops(x): p:= product('x[i]', 'i'=1..n1):m:=n/p:if m=x[n1] then printf(`%d, `,n):else fi:od:
-
Mathematica
rad[n_]:=Times@@(First@#&/@FactorInteger@n);Select[Range[2,2000],FactorInteger[#][[-1,1]]==#/rad[#]&] gpQ[n_]:=Module[{pf=Transpose[FactorInteger[n]][[1]]},n/Times@@pf == Last[ pf]]; Select[Range[2,2000],gpQ] (* Harvey P. Dale, Aug 16 2014 *)
-
PARI
isok(n) = my(f = factor(n)); n/factorback(f[, 1]) == f[#f~, 1]; \\ Michel Marcus, Aug 16 2014
Comments