cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229062 1 if n is representable as sum of two nonnegative squares, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Ralf Stephan, Sep 17 2013

Keywords

Comments

Characteristic function of A001481.
a(n) = 1 if A000161(n) > 0.
a(A022544(n)) = 0.
Multiplicative because A002654 is. - Andrew Howroyd, Aug 01 2018
For positive n, m = 2*a(n) + 1 is the smallest positive integer such that m * n is not a sum of two squares. - Peter Schorn, Dec 29 2023

Crossrefs

Cf. A002654, A004018, A070176. Partial sums are in A102548.

Programs

  • Mathematica
    Join[{1},Table[If[SquaresR[2,n]>1,1,0],{n,120}]] (* Harvey P. Dale, Aug 25 2017 *)
  • PARI
    a(n)=my(f=0); my(r=sqrtint(n)); forstep(i=r, 1, -1, if(issquare(n-i*i), f=1; break)); f
    
  • PARI
    a(n)=if(0==n,1,(sumdiv(n, d,(d%4==1) - (d%4==3)) > 0)); \\ Andrew Howroyd, Aug 01 2018, the check for 0-argument added by Antti Karttunen, Apr 22 2022
    
  • Python
    from sympy import factorint
    def A229062(n): return int(all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items())) # Chai Wah Wu, Jun 28 2022

Formula

a(n) = min{1, A004018(n)}. - N. J. A. Sloane, Jan 11 2020