cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229088 Numbers k such that sigma(k) mod k = antisigma(k) mod k, where sigma(k) = A000203(k) = sum of divisors of k, antisigma(k) = A024816(k) = sum of non-divisors of k.

Original entry on oeis.org

1, 4, 40, 224, 360, 2016, 47616, 174592, 293760, 524160, 1571328, 1782144, 3485664, 134209536, 282977280, 492101632, 746444160, 1459956960, 1684126080, 1716728832, 4428914688, 27298252800, 41233360896, 376591138560, 719045268480, 1622308746240
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2013

Keywords

Comments

Numbers k such that A229087(k) = A000203(k) mod k - A024816(k) mod k = A054024(k) - A229110(k) = 0.
Complement of union A229089 and A229090 with respect to A000027; where A229089 = numbers k such that sigma(k) mod k < antisigma(k) mod k, A229090 = numbers k such that sigma(k) mod k > antisigma(k) mod k.
719045268480 and 1622308746240 are also terms. - Donovan Johnson, Oct 25 2013
If a number m is in this sequence and k(m) = A054024(m)/m = A229110(m)/m then k(m) = 0 for odd m (for number 1 and eventually odd multiply-perfect numbers m > 1). Conjecture: k(m) = 1/4 or 3/4 for all even m. Sequence of values k(m): 0, 3/4, 1/4, 1/4, 1/4, 1/4, 3/4, 1/4, 3/4, 1/4, 1/4, 3/4, 3/4, 3/4, 3/4, 1/4, 3/4, 3/4, 3/4, 3/4, 1/4, 3/4, 3/4, ... . Value k(m) = 3/4 also for m = 719045268480 and 1622308746240. - Jaroslav Krizek, Jun 19 2014
Also, the denominator of sigma(k)/k (reduced to lowest terms) of the currently known terms, except 1, are all 4: 1, 7/4, 9/4, 9/4, 13/4, 13/4, 11/4, 9/4, 15/4, 17/4, 13/4, 15/4, 15/4, 11/4, 15/4, 9/4, 19/4, 19/4, 19/4, 15/4, 13/4, 19/4, 15/4. - Michel Marcus, Jun 21 2014
Conjecture: For k>1, numbers k such that GCD(sigma(k), k) = n/4. - Jaroslav Krizek, Sep 23 2014

Examples

			40 is in sequence because sigma(40) mod 40 = 90 mod 40 = antisigma(40) mod 40 = 730 mod 40 = 10.
		

Crossrefs

Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n).

Programs

  • PARI
    for(n=1, 10^9, s=sigma(n); t=n*(n+1)/2; if(s%n==(t-s)%n, print1(n ", "))) /* Donovan Johnson, Oct 24 2013 */

Extensions

a(8)-a(23) from Donovan Johnson, Oct 24 2013
a(24)-a(26) from Jud McCranie, Oct 10 2023