A229088 Numbers k such that sigma(k) mod k = antisigma(k) mod k, where sigma(k) = A000203(k) = sum of divisors of k, antisigma(k) = A024816(k) = sum of non-divisors of k.
1, 4, 40, 224, 360, 2016, 47616, 174592, 293760, 524160, 1571328, 1782144, 3485664, 134209536, 282977280, 492101632, 746444160, 1459956960, 1684126080, 1716728832, 4428914688, 27298252800, 41233360896, 376591138560, 719045268480, 1622308746240
Offset: 1
Keywords
Examples
40 is in sequence because sigma(40) mod 40 = 90 mod 40 = antisigma(40) mod 40 = 730 mod 40 = 10.
Crossrefs
Programs
-
PARI
for(n=1, 10^9, s=sigma(n); t=n*(n+1)/2; if(s%n==(t-s)%n, print1(n ", "))) /* Donovan Johnson, Oct 24 2013 */
Extensions
a(8)-a(23) from Donovan Johnson, Oct 24 2013
a(24)-a(26) from Jud McCranie, Oct 10 2023
Comments