A229125 Numbers of the form p * m^2, where p is prime and m > 0: union of A228056 and A000040.
2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 147, 148, 149
Offset: 1
Keywords
Links
- Chris Boyd, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical notes, IX. On the set of integers representable as a product of a prime and square, Acta Arithmetica, Vol. 7 (1962), pp. 417-420.
Crossrefs
Programs
-
Mathematica
With[{nn=70},Take[Union[Flatten[Table[p*m^2,{p,Prime[Range[nn]]},{m,nn}]]], nn]] (* Harvey P. Dale, Dec 02 2014 *)
-
PARI
test(n)=isprime(core(n)) for(n=1,200,if(test(n), print1(n",")))
-
Python
from math import isqrt from sympy import primepi def A229125(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//y**2) for y in range(1,isqrt(x)+1)) return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025
Formula
The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). - Amiram Eldar, Jul 27 2020
Comments