cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227978 a(0)=1, a(1)=2; for n>1, a(n) = n*(2^n+4)/4.

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 102, 231, 520, 1161, 2570, 5643, 12300, 26637, 57358, 122895, 262160, 557073, 1179666, 2490387, 5242900, 11010069, 23068694, 48234519, 100663320, 209715225, 436207642, 905969691, 1879048220, 3892314141, 8053063710, 16642998303
Offset: 0

Views

Author

Paul Curtz, Oct 07 2013

Keywords

Comments

The inverse binomial transform of A176328/A176591 (see Comments field in A228827) begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, ... Consider these values without sign and the fractions rounded to the nearest integer, the sequence lists the resulting numbers.
Differences table of a(n):
1, 2, 4, 9, 20, 45, 102, 231, 520, 1161, ...
1, 2, 5, 11, 25, 57, 129, 289, 641, 1409, ... After 2: 2^m*(m+4)+1.
1, 3, 6, 14, 32, 72, 160, 352, 768, 1664, ... A078836 (after 3).
2, 3, 8, 18, 40, 88, 192, 416, 896, 1920, ... A129955.
1, 5, 10, 22, 48, 104, 224, 480, 1024, 2176, ... A079861 (after 5).
4, 5, 12, 26, 56, 120, 256, 544, 1152, 2432, ... After 5: 2^m*(m+12).
1, 7, 14, 30, 64, 136, 288, 608, 1280, 2688, ... After 7: 2^m*(m+14).
6, 7, 16, 34, 72, 152, 320, 672, 1408, 2944, ..., etc.
(n-1)*a(n)-n*a(n-1) = A001788(n-1) for n>1. [Bruno Berselli, Oct 11 2013]

Crossrefs

Programs

  • Magma
    [1,2] cat [n*(2^n+4)/4: n in [2..40]]; // Bruno Berselli, Oct 11 2013
    
  • Mathematica
    Join[{1, 2}, Table[n (2^n + 4)/4, {n, 2, 40}]] (* Bruno Berselli, Oct 11 2013 *)
  • PARI
    a(n) = if (n == 0, 1, if (n == 1, 2, n*(2^n+4)/4)); \\ Michel Marcus, Oct 11 2013

Formula

a(2n+2) = A229135(n+1); a(2n-1) = -A228767(n) for n>0.
a(n) = 6*a(n-1) -13*a(n-2) +12*a(n-3) -4*a(n-4) for n>5.
G.f.: (1-4*x+5*x^2-x^3-2*x^4+2*x^5)/((1-x)^2*(1-2*x)^2). - Colin Barker, Oct 09 2013

Extensions

More terms from Colin Barker, Oct 09 2013
Showing 1-1 of 1 results.