cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A229079 Number A(n,k) of ascending runs in {1,...,k}^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 7, 3, 0, 0, 4, 15, 20, 4, 0, 0, 5, 26, 63, 52, 5, 0, 0, 6, 40, 144, 243, 128, 6, 0, 0, 7, 57, 275, 736, 891, 304, 7, 0, 0, 8, 77, 468, 1750, 3584, 3159, 704, 8, 0, 0, 9, 100, 735, 3564, 10625, 16896, 10935, 1600, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2013

Keywords

Examples

			A(4,1) = 4: [1,1,1,1].
A(3,2) = 20 = 3+3+2+3+2+2+2+3: [1,1,1], [2,1,1], [1,2,1], [2,2,1], [1,1,2], [2,1,2], [1,2,2], [2,2,2].
A(2,3) = 15 = 2+2+2+1+2+2+1+1+2: [1,1], [2,1], [3,1], [1,2], [2,2], [3,2], [1,3], [2,3], [3,3].
A(1,4) = 4 = 1+1+1+1: [1], [2], [3], [4].
Square array A(n,k) begins:
  0, 0,   0,     0,     0,      0,       0,       0, ...
  0, 1,   2,     3,     4,      5,       6,       7, ...
  0, 2,   7,    15,    26,     40,      57,      77, ...
  0, 3,  20,    63,   144,    275,     468,     735, ...
  0, 4,  52,   243,   736,   1750,    3564,    6517, ...
  0, 5, 128,   891,  3584,  10625,   25920,   55223, ...
  0, 6, 304,  3159, 16896,  62500,  182736,  453789, ...
  0, 7, 704, 10935, 77824, 359375, 1259712, 3647119, ...
		

Crossrefs

Columns k=0-10 give: A000004, A001477, A066373(n+1) for n>0, A229277, A229278, A229279, A229280, A229281, A229282, A229283, A229284.
Main diagonal gives A229078.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 0, k^(n-1)*((n+1)*k+n-1)/2):
    seq(seq(A(n,d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = a[0, ] = 0; a[n_, k_] := k^(n-1)*((n+1)*k+n-1)/2; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)

Formula

A(n,k) = k^(n-1)*((n+1)*k+n-1)/2 for n>0, A(0,k) = 0.

A374709 a(n) = n*(6*n^4 + 8*n^3 + 1 - (-1)^n)/16.

Original entry on oeis.org

0, 1, 20, 132, 512, 1485, 3564, 7504, 14336, 25425, 42500, 67716, 103680, 153517, 220892, 310080, 425984, 574209, 761076, 993700, 1280000, 1628781, 2049740, 2553552, 3151872, 3857425, 4684004, 5646564, 6761216, 8045325, 9517500, 11197696, 13107200, 15268737, 17706452
Offset: 0

Views

Author

Stefano Spezia, Jul 17 2024

Keywords

Crossrefs

Row sums of A374708.

Programs

  • Mathematica
    LinearRecurrence[{4,-4,-4,10,-4,-4,4,-1},{0,1,20,132,512,1485,3564,7504},35]

Formula

O.g.f.: x*(1 + 16*x + 56*x^2 + 68*x^3 + 35*x^4 + 4*x^5)/((1 - x)^6*(1 + x)^2).
a(n) = 4*a(n-1) - 4*a(n-2) - 4*a(n-3) + 10*a(n-4) - 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8) for n > 7.
E.g.f.: x*((8 + 73*x + 99*x^2 + 34*x^3 + 3*x^4)*cosh(x) + (7 + 73*x + 99*x^2 + 34*x^3 + 3*x^4)*sinh(x))/8.
a(2*n) = 4*A229147(n) = 4*A000583(n)*A016789(n).
Showing 1-2 of 2 results.