cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A099721 a(n) = n^2*(2*n+1).

Original entry on oeis.org

0, 3, 20, 63, 144, 275, 468, 735, 1088, 1539, 2100, 2783, 3600, 4563, 5684, 6975, 8448, 10115, 11988, 14079, 16400, 18963, 21780, 24863, 28224, 31875, 35828, 40095, 44688, 49619, 54900, 60543, 66560, 72963, 79764, 86975, 94608, 102675, 111188, 120159, 129600
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 07 2004

Keywords

Comments

For a right triangle with sides of lengths 8*n^3 + 12*n^2 + 8*n + 2, 4*n^4 + 8*n^3 + 4*n^2, and 4*n^4 + 8*n^3 + 12*n^2 + 8*n + 2, dividing the area by the perimeter gives a(n). - J. M. Bergot, Jul 30 2013
This sequence is the difference between the centered icosahedral (or cuboctahedral) numbers (A005902(n)) and the centered octagonal pyramidal numbers (A000447(n+1)). - Peter M. Chema, Jan 09 2016
a(n) is the sum of the integers in the closed interval (n-1)*n to n*(n+1). - J. M. Bergot, Apr 19 2017

Crossrefs

Programs

Formula

G.f.: x*(3 + 8*x + x^2)/(x-1)^4.
a(n) = A024196(n) - A024196(n-1). - Philippe Deléham, May 07 2012
a(n) = ceiling(Sum_{i=n^2-(n-1)..n^2+(n-1)} s(i)), for n > 0 and integer i, where s(i) are the real solutions to x = i + sqrt(x), and the summation range excludes the integer solutions which occur where i is an oblong number (A002378). The fractional portion of the summation converges to 2/3 for large n. If s(i) is replaced with i, then the summation equals n^2*(2*n-1) = A015237. - Richard R. Forberg, Oct 15 2014
a(n) = A005902(n) - A000447(n+1). - Peter M. Chema, Jan 09 2016
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 + 4*log(2) - 4.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - Pi - 2*log(2) + 4. (End)
From Elmo R. Oliveira, Aug 08 2025: (Start)
E.g.f.: x*(1 + 2*x)*(3 + x)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A000290(n)*A005408(n). (End)

A066373 a(n) = (3*n-2)*2^(n-3).

Original entry on oeis.org

2, 7, 20, 52, 128, 304, 704, 1600, 3584, 7936, 17408, 37888, 81920, 176128, 376832, 802816, 1703936, 3604480, 7602176, 15990784, 33554432, 70254592, 146800640, 306184192, 637534208, 1325400064, 2751463424, 5704253440, 11811160064, 24427626496, 50465865728, 104152956928
Offset: 2

Views

Author

N. J. A. Sloane, Jan 04 2002

Keywords

Comments

An elephant sequence, see A175654. For the corner squares 16 A[5] vectors, with decimal values between 59 and 440, lead to this sequence (with a leading 1 added). For the central square these vectors lead to the companion sequence A098156 (without a(1)). - Johannes W. Meijer, Aug 15 2010
a(n) is the total number of 1's in runs of 1's of length >= 2 over all binary words with n bits. - Félix Balado, Jan 15 2024

Crossrefs

Column k=2 of A229079.

Programs

  • Maple
    seq((3*n-2)*2^(n-3),n=2..30); # Emeric Deutsch, Jul 23 2006
  • Mathematica
    Array[(3 # - 2)*2^(# - 3) &, 28, 2] (* or *)
    Drop[CoefficientList[Series[x^2*(2 - x)/(1 - 2 x)^2, {x, 0, 29}], x], 2] (* Michael De Vlieger, Jun 30 2018 *)
  • PARI
    a(n) = { (3*n - 2)*2^(n - 3) } /* Harry J. Smith, Feb 11 2010 */

Formula

G.f.: x^2*(2-x)/(1-2x)^2. - Emeric Deutsch, Jul 23 2006
a(n) = 2*a(n-1) +3*2^(n-3). - Vincenzo Librandi, Mar 20 2011
a(n+1) - a(n) = A098156(n). - R. J. Mathar, Apr 25 2013
From Paul Curtz, Jun 29 2018: (Start)
a(n) = A130129(n-2) - A130129(n-3) for n >= 2.
Binomial transform of A016789.
Inverse binomial transform of A288834.
Also the main diagonal of the difference table of m -> (-1)^m*(m+2).
2, -3, 4, -5, ...
-5, 7, -9, 11, ...
12, -16, 20, -24, ...
-28, 36, -44, 52, ... . (End)

A229078 Number of ascending runs in {1,...,n}^n.

Original entry on oeis.org

0, 1, 7, 63, 736, 10625, 182736, 3647119, 82837504, 2109289329, 59500000000, 1841557146671, 62041198952448, 2259914256880657, 88499197217837056, 3707501605224609375, 165444235911082541056, 7834451891982365825441, 392371124973096027488256
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2013

Keywords

Examples

			a(1) = 1: [1].
a(2) = 7 = 2+2+1+2: [1,1], [2,1], [1,2], [2,2].
		

Crossrefs

Main diagonal of A229079.
Cf. A062023 (nondescending runs), A066274.

Programs

  • Maple
    a:= n-> `if`(n=0, 0, n^(n-1)*(n*(n+2)-1)/2):
    seq(a(n), n=0..25);

Formula

a(n) = n^(n-1)*(n*(n+2)-1)/2 for n>0, a(0) = 0.
E.g.f.: 1/2*W(-x)*(W(-x)^3+W(-x)^2-W(-x)-2)/(1+W(-x))^3, W(x) Lambert's function (principal branch).
a(n) = A062023(n) + A066274(n) for n>0.

A229147 a(n) = n^4*(3*n+2).

Original entry on oeis.org

0, 5, 128, 891, 3584, 10625, 25920, 55223, 106496, 190269, 320000, 512435, 787968, 1171001, 1690304, 2379375, 3276800, 4426613, 5878656, 7688939, 9920000, 12641265, 15929408, 19868711, 24551424, 30078125, 36558080, 44109603, 52860416, 62948009, 74520000
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2013

Keywords

Comments

Number of ascending runs in {1,...,n}^5.

Crossrefs

Row n=5 of A229079.

Programs

  • Maple
    a:= n-> n^4*(3*n+2):
    seq(a(n), n=0..40);
  • Mathematica
    Table[n^4 (3n+2),{n,0,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,5,128,891,3584,10625},40] (* Harvey P. Dale, Aug 14 2015 *)

Formula

G.f.: (x^4+58*x^3+198*x^2+98*x+5)*x/(x-1)^6.
a(0)=0, a(1)=5, a(2)=128, a(3)=891, a(4)=3584, a(5)=10625, a(n)= 6*a(n-1)- 15*a(n-2)+ 20*a(n-3)- 15*a(n-4)+ 6*a(n-5)- a(n-6). - Harvey P. Dale, Aug 14 2015
E.g.f.: exp(x)*x*(5 + 59*x + 87*x^2 + 32*x^3 + 3*x^4). - Stefano Spezia, Jul 17 2024

A229146 a(n) = n^3*(5*n+3)/2.

Original entry on oeis.org

0, 4, 52, 243, 736, 1750, 3564, 6517, 11008, 17496, 26500, 38599, 54432, 74698, 100156, 131625, 169984, 216172, 271188, 336091, 412000, 500094, 601612, 717853, 850176, 1000000, 1168804, 1358127, 1569568, 1804786, 2065500, 2353489, 2670592, 3018708, 3399796
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2013

Keywords

Comments

Number of ascending runs in {1,...,n}^4.

Crossrefs

Row n=4 of A229079.

Programs

  • Maple
    a:= n-> n^3*(5*n+3)/2:
    seq(a(n), n=0..40);
  • Mathematica
    Table[n^3(5n+3)/2,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,4,52,243,736},40] (* Harvey P. Dale, Apr 29 2022 *)

Formula

G.f.: -(x^3+23*x^2+32*x+4)*x/(x-1)^5.

A229148 a(n) = n^5*(7*n+5)/2.

Original entry on oeis.org

0, 6, 304, 3159, 16896, 62500, 182736, 453789, 999424, 2007666, 3750000, 6603091, 11073024, 17822064, 27697936, 41765625, 61341696, 88031134, 123766704, 170850831, 232000000, 310391676, 409713744, 534216469, 688766976, 878906250, 1110908656, 1391843979
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2013

Keywords

Comments

Number of ascending runs in {1,...,n}^6.

Crossrefs

Row n=6 of A229079.

Programs

  • Maple
    a:= n-> n^5*(7*n+5)/2:
    seq(a(n), n=0..40);
  • Mathematica
    Table[n^5(7*n+5)/2,{n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,6,304,3159,16896,62500,182736},30] (* Harvey P. Dale, Apr 07 2018 *)

Formula

G.f.: -(x^5+137*x^4+957*x^3+1157*x^2+262*x+6)*x/(x-1)^7.

A229149 a(n) = n^6*(4*n+3).

Original entry on oeis.org

0, 7, 704, 10935, 77824, 359375, 1259712, 3647119, 9175040, 20726199, 43000000, 83263367, 152285184, 265474495, 444242624, 717609375, 1124073472, 1713767399, 2550916800, 3716624599, 5312000000, 7461652527, 10317571264, 14063409455, 18919194624, 25146484375
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2013

Keywords

Comments

Number of ascending runs in {1,...,n}^7.

Crossrefs

Row n=7 of A229079.

Programs

  • Maple
    a:= n-> n^6*(4*n+3):
    seq(a(n), n=0..40);
  • Mathematica
    Table[n^6 (4n+3),{n,0,40}] (* Harvey P. Dale, Oct 10 2023 *)

Formula

G.f.: (x^6+312*x^5+4029*x^4+9664*x^3+5499*x^2+648*x+7)*x/(x-1)^8.

A229150 a(n) = n^7*(9*n+7)/2.

Original entry on oeis.org

0, 8, 1600, 37179, 352256, 2031250, 8538048, 28824005, 82837504, 210450636, 485000000, 1032820063, 2060328960, 3890408054, 7009998016, 12131015625, 20266876928, 32827093840, 51732592704, 79554584771, 119680000000, 176506677018, 255671683520, 364316322829
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2013

Keywords

Comments

Number of ascending runs in {1,...,n}^8.

Crossrefs

Row n=8 of A229079.

Programs

  • Maple
    a:= n-> n^7*(9*n+7)/2:
    seq(a(n), n=0..40);
  • Mathematica
    A229150[n_]:=n^7(9n+7)/2;Array[A229150,30,0] (* Paolo Xausa, Oct 24 2023 *)

Formula

G.f.: -(x^7+695*x^6+15570*x^5+65998*x^4+74573*x^3+23067*x^2+1528*x+8)*x/ (x-1)^9.

A229151 a(n) = n^8*(5*n+4).

Original entry on oeis.org

0, 9, 3584, 124659, 1572864, 11328125, 57106944, 224827239, 738197504, 2109289329, 5400000000, 12647173979, 27518828544, 56285419749, 109208390144, 202468359375, 360777252864, 620842412249, 1035876294144, 1681372741059, 2662400000000, 4122691670349
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2013

Keywords

Comments

Number of ascending runs in {1,...,n}^9.

Crossrefs

Row n=9 of A229079.

Programs

  • Maple
    a:= n-> n^8*(5*n+4):
    seq(a(n), n=0..40);
  • Mathematica
    Table[n^8 (5n+4),{n,0,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,9,3584,124659,1572864,11328125,57106944,224827239,738197504,2109289329},30] (* Harvey P. Dale, Feb 11 2015 *)

Formula

G.f.: (x^8 +1526*x^7 +56856*x^6 +395866*x^5 +780950*x^4 +486474*x^3 +89224*x^2 +3494*x+9)*x / (x-1)^10.
a(0)=0, a(1)=9, a(2)=3584, a(3)=124659, a(4)=1572864, a(5)=11328125, a(6)=57106944, a(7)=224827239, a(8)=738197504, a(9)=2109289329, a(n)= 10*a(n-1)- 45*a(n-2)+120*a(n-3)-210*a(n-4)+252*a(n-5)-210*a(n-6)+120*a(n-7)- 45*a(n-8)+ 10*a(n-9)-a(n-10). - Harvey P. Dale, Feb 11 2015

A229152 a(n) = n^9*(11*n+9)/2.

Original entry on oeis.org

0, 10, 7936, 413343, 6946816, 62500000, 377913600, 1735205101, 6509559808, 20920706406, 59500000000, 153266599915, 363764514816, 805941952348, 1683875312896, 3344572265625, 6356551598080, 11621611896706, 20530186553088, 35172959057911, 58624000000000
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2013

Keywords

Comments

Number of ascending runs in {1,...,n}^10.

Crossrefs

Row n=10 of A229079.

Programs

  • Maple
    a:= n-> n^9*(11*n+9)/2:
    seq(a(n), n=0..40);
  • Mathematica
    A229152[n_]:=n^9(11n+9)/2;Array[A229152,30,0] (* Paolo Xausa, Oct 23 2023 *)

Formula

G.f.: -(x^9 +3317*x^8 +199643*x^7 +2172239*x^6 +6901145*x^5 +7512749*x^4 +2834873*x^3 +326597*x^2 +7826*x +10)*x / (x-1)^11.
Showing 1-10 of 18 results. Next