cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A229079 Number A(n,k) of ascending runs in {1,...,k}^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 7, 3, 0, 0, 4, 15, 20, 4, 0, 0, 5, 26, 63, 52, 5, 0, 0, 6, 40, 144, 243, 128, 6, 0, 0, 7, 57, 275, 736, 891, 304, 7, 0, 0, 8, 77, 468, 1750, 3584, 3159, 704, 8, 0, 0, 9, 100, 735, 3564, 10625, 16896, 10935, 1600, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2013

Keywords

Examples

			A(4,1) = 4: [1,1,1,1].
A(3,2) = 20 = 3+3+2+3+2+2+2+3: [1,1,1], [2,1,1], [1,2,1], [2,2,1], [1,1,2], [2,1,2], [1,2,2], [2,2,2].
A(2,3) = 15 = 2+2+2+1+2+2+1+1+2: [1,1], [2,1], [3,1], [1,2], [2,2], [3,2], [1,3], [2,3], [3,3].
A(1,4) = 4 = 1+1+1+1: [1], [2], [3], [4].
Square array A(n,k) begins:
  0, 0,   0,     0,     0,      0,       0,       0, ...
  0, 1,   2,     3,     4,      5,       6,       7, ...
  0, 2,   7,    15,    26,     40,      57,      77, ...
  0, 3,  20,    63,   144,    275,     468,     735, ...
  0, 4,  52,   243,   736,   1750,    3564,    6517, ...
  0, 5, 128,   891,  3584,  10625,   25920,   55223, ...
  0, 6, 304,  3159, 16896,  62500,  182736,  453789, ...
  0, 7, 704, 10935, 77824, 359375, 1259712, 3647119, ...
		

Crossrefs

Columns k=0-10 give: A000004, A001477, A066373(n+1) for n>0, A229277, A229278, A229279, A229280, A229281, A229282, A229283, A229284.
Main diagonal gives A229078.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 0, k^(n-1)*((n+1)*k+n-1)/2):
    seq(seq(A(n,d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = a[0, ] = 0; a[n_, k_] := k^(n-1)*((n+1)*k+n-1)/2; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)

Formula

A(n,k) = k^(n-1)*((n+1)*k+n-1)/2 for n>0, A(0,k) = 0.

A062023 a(n) = (n^(n+1) + n^(n-1))/2.

Original entry on oeis.org

1, 5, 45, 544, 8125, 143856, 2941225, 68157440, 1764915561, 50500000000, 1582182900661, 53868106874880, 1980337235410885, 78180905165533184, 3298800640869140625, 148150413341979836416, 7055872821971695929745, 355210628457538186444800
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

a(n) is the number of monotonic runs over all length n words on an alphabet of n letters. - Geoffrey Critzer, Jun 25 2013

Examples

			a(3) = {3^4 +3^2}/2 = 45.
		

Crossrefs

Cf. A229078.

Programs

  • Mathematica
    Table[(n^(n-1)+n^(n+1))/2,{n,1,20}] (* Geoffrey Critzer, Jun 25 2013 *)
  • PARI
    a(n) = { (n^(n+1) + n^(n-1))/2 } \\ Harry J. Smith, Jul 29 2009
    
  • SageMath
    [(n^(n+1) + n^(n-1))/2 for n in (1..20)] # G. C. Greubel, May 04 2022

Formula

E.g.f.: (-1/2)*LambertW(-x)*(1 + 1/(1 + LambertW(-x))^3). - G. C. Greubel, May 04 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Showing 1-2 of 2 results.