A229078
Number of ascending runs in {1,...,n}^n.
Original entry on oeis.org
0, 1, 7, 63, 736, 10625, 182736, 3647119, 82837504, 2109289329, 59500000000, 1841557146671, 62041198952448, 2259914256880657, 88499197217837056, 3707501605224609375, 165444235911082541056, 7834451891982365825441, 392371124973096027488256
Offset: 0
a(1) = 1: [1].
a(2) = 7 = 2+2+1+2: [1,1], [2,1], [1,2], [2,2].
A225753
Triangle of transformations with k monotonic runs.
Original entry on oeis.org
1, 3, 1, 10, 16, 1, 35, 155, 65, 1, 126, 1246, 1506, 246, 1, 462, 9142, 24017, 12117, 917, 1, 1716, 63792, 315918, 349840, 88852, 3424, 1, 6435, 432399, 3707559, 7635987, 4362297, 619677, 12861, 1, 24310, 2881450, 40455910, 140543458, 149803270, 49462810, 4200670, 48610, 1
Offset: 1
T(1,1) = #{[0]} = 1.
T(2,1) = #{[0,0], [0,1], [1,1]} = 3.
T(2,2) = #{[1,0]} = 1.
T(3,1) = #{[0,0,0], [0,0,1], [0,0,2], [0,1,1], [0,1,2], [0,2,2], [1,1,1], [1,1,2], [1,2,2], [2,2,2]} = 10.
Triangle T(n,k) begins:
1;
3, 1;
10, 16, 1;
35, 155, 65, 1;
126, 1246, 1506, 246, 1;
462, 9142, 24017, 12117, 917, 1;
1716, 63792, 315918, 349840, 88852, 3424, 1;
...
-
b:= proc(n, l, k) option remember; local j;
if n=0 then [1] else []; for j to k do zip((x, y)->x+y,
%, [`if`(j b(n, 0, n)[]:
seq(T(n), n=1..10); # Alois P. Heinz, Jun 26 2013
-
Table[Distribution[Map[Length,Map[Split[#,LessEqual[#1,#2]&]&,Tuples[Range[1,n],n]]]],{n,1,7}]//Grid (* Geoffrey Critzer, Jun 25 2013 *)
zip[f_, x_, y_, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
b[n_, l_, k_] := b[n, l, k] = Module[{j, pc}, If[n == 0, {1}, pc = {}; For[j = 1, j <= k, j++, pc = zip[Plus, pc, Join[If[jJean-François Alcover, Dec 05 2023, after Alois P. Heinz *)
A226998
The number of descents over all functions f:{1,2,...,n}->{1,2,...,n}.
Original entry on oeis.org
0, 1, 18, 288, 5000, 97200, 2117682, 51380224, 1377495072, 40500000000, 1296871230050, 44952006426624, 1677462128818632, 67068898339975168, 2860906750488281250, 129703669268270284800, 6228632560085359165568, 315864220382241648869376, 16868630748261621128320242
Offset: 1
Showing 1-3 of 3 results.
Comments