A229156 Decimal expansion of the negated value of the integral over (1/(1-y) + 1/log(y))*log(1-y)/y between 0 and 1.
9, 1, 6, 2, 4, 0, 1, 4, 9, 8, 4, 4, 2, 9, 5, 8, 3, 0, 5, 3, 4, 8, 0, 9, 2, 7, 5, 6, 2, 5, 7, 3, 3, 3, 8, 8, 8, 0, 1, 4, 4, 7, 1, 8, 2, 3, 9, 3, 8, 7, 6, 1, 3, 7, 8, 4, 4, 1, 8, 9, 2, 2, 3, 9, 4, 4, 7, 3, 5, 1, 9, 8, 4, 7, 7, 9, 6, 7, 2, 8, 6, 8, 6, 9, 3, 5, 9
Offset: 0
Examples
-0.91624014984429583053480927562573338...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- D. Zagier, A Kronecker limit formula for real quadratic fields, Mathem. Ann. 213 (2) (1975) 153-184, value of F(1), equation (7.12).
Programs
-
Mathematica
RealDigits[N[EulerGamma^2/2 + Pi^2/12 + StieltjesGamma[1], 2501]][[1]] (* G. C. Greubel, Dec 26 2016 *)
-
PARI
intnum(y=0, 1, (1/(1-y)+1/log(y)) *log(1-y) /y) \\ Michel Marcus, Dec 26 2016