A229254 Numbers k such that k and k+2 have the same number (A000005) and sum of divisors (A000203).
33, 54, 918, 1240, 3304, 4148, 4187, 7169, 12565, 15085, 19688, 24881, 25019, 26609, 38982, 51835, 53963, 59987, 76360, 77057, 96728, 143369, 150419, 167560, 170561, 205727, 215069, 220817, 278920, 418307, 564857, 731320, 785270, 907254, 910315, 986153
Offset: 1
Keywords
Examples
Divisors of 54 = {1, 2, 3, 6, 9, 18, 27, 54}, divisors of 56 = {1, 2, 4, 7, 8, 14, 28, 56}, both have 8 divisors and sum = 120.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[10000], DivisorSigma[0, #] == DivisorSigma[0, # + 2] && DivisorSigma[1, #] == DivisorSigma[1, # + 2] &]
-
PARI
isok(n) = (numdiv(n) == numdiv(n+2)) && (sigma(n) == sigma(n+2)); \\ Michel Marcus, Sep 20 2013
Extensions
More terms from Michel Marcus, Sep 20 2013
Comments