cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229142 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2013

Keywords

Comments

Column k is the diagonal of the rational function 1 / (1 - Sum_{j=1..k} x_j - Product_{j=1..k} x_j) for k>1. - Seiichi Manyama, Jul 10 2020

Examples

			A(1,3) = 3*2+1 = 7:
          (0,1,1)-(0,0,1)
         /       X       \
  (1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
       \ \       X       / /
        \ (1,1,0)-(1,0,0) /
         `---------------´
Square array A(n,k) begins:
  1, 1,    1,       1,           1,               1, ...
  1, 1,    3,       7,          25,             121, ...
  1, 1,   13,     115,        2641,          114121, ...
  1, 1,   63,    2371,      392641,       169417921, ...
  1, 1,  321,   54091,    67982041,    308238414121, ...
  1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
		

Crossrefs

Rows n=0-1 give: A000012, A038507 (for k>1).
Main diagonal gives: A229267.

Programs

  • Maple
    with(combinat):
    A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = Sum_{j=0..n} multinomial(n+(k-1)*j; n-j, {j}^k) for k>1, A(n,0) = A(n,1) = 1.
G.f. of column k: Sum_{j>=0} (k*j)!/j!^k * x^j / (1-x)^(k*j+1). for k>1. - Seiichi Manyama, Jul 10 2020

A229264 Primes in A065387 in the order of their appearance.

Original entry on oeis.org

2, 19, 19, 79, 103, 113, 257, 523, 509, 1151, 1279, 1193, 1579, 2273, 3061, 2389, 2693, 2843, 5003, 4831, 5119, 7411, 5693, 5623, 8623, 6323, 10139, 8933, 18401, 14957, 20411, 20479, 21191, 20123, 29683, 28211, 36833, 55021, 57203, 68743, 48761, 66533, 62423
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Third term of A038344 is 9 and sigma(9) + phi(9) = 13 + 6 = 19 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+phi(n);
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Select[Table[DivisorSigma[1,n]+EulerPhi[n],{n,30000}],PrimeQ] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    lista(kmax) = {my(f, s); for(k = 1, kmax, f = factor(k); s= sigma(f) + eulerphi(f); if(isprime(s), print1(s, ", ")));} \\ Amiram Eldar, Nov 19 2024

Extensions

Name corrected by Amiram Eldar, Nov 19 2024

A336172 a(n) = Sum_{k=0..n} (-1)^(n-k) * multinomial(n+(n-1)*k; n-k, {k}^n).

Original entry on oeis.org

1, 0, 1, 1109, 58370761, 616967236620839, 2667424979594724623421841, 7363013376580445620328429354795257679, 18165626590057176919253932602358956717053291818375681, 53130672834302729155813211757017136527240145191602729876485547920535679
Offset: 0

Views

Author

Seiichi Manyama, Jul 10 2020

Keywords

Crossrefs

Main diagonal of A336169.
Cf. A229267.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k)*(n + (n - 1)*k)!/((n - k)!*k!^n), {k, 0, n}]; Array[a, 10, 0] (* Amiram Eldar, Jul 10 2020 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*(n+(n-1)*k)!/((n-k)!*k!^n))}

Formula

a(n) = [x^n] Sum_{k=0..n} (n*k)!/k!^n * x^k / (1+x)^(n*k+1).
Showing 1-3 of 3 results.