cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229325 Total sum of cubes of parts in all partitions of n.

Original entry on oeis.org

0, 1, 10, 39, 122, 287, 660, 1281, 2486, 4392, 7686, 12628, 20790, 32471, 50694, 76560, 115038, 168333, 245784, 350896, 499620, 699468, 975150, 1341077, 1838550, 2490092, 3361260, 4494084, 5986750, 7909231, 10416300, 13616768, 17745948, 22983345, 29672974
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of cubes of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^3}*x^k). The g.f. g given in the Formula section was obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015

Crossrefs

Column k=3 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^3])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
  • Mathematica
    Table[Total[Flatten[IntegerPartitions[n]^3]],{n,0,40}] (* Harvey P. Dale, May 01 2016 *)
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], Function[{g, h}, g + h + {0, h[[1]]*i^3}][b[n, i-1], b[n-i, i]]]]];
    a[n_] := b[n, n][[2]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^3.
G.f.: g(x) = (Sum_{k>=1} k^3*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ sqrt(3)/5 * exp(Pi*sqrt(2*n/3)) * n. - Vaclav Kotesovec, May 28 2018