A229325 Total sum of cubes of parts in all partitions of n.
0, 1, 10, 39, 122, 287, 660, 1281, 2486, 4392, 7686, 12628, 20790, 32471, 50694, 76560, 115038, 168333, 245784, 350896, 499620, 699468, 975150, 1341077, 1838550, 2490092, 3361260, 4494084, 5986750, 7909231, 10416300, 13616768, 17745948, 22983345, 29672974
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8500
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008.
Crossrefs
Column k=3 of A213191.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], `if`(i>n, b(n, i-1), ((g, h)-> g+h+[0, h[1]*i^3])(b(n, i-1), b(n-i, i))))) end: a:= n-> b(n, n)[2]: seq(a(n), n=0..40);
-
Mathematica
Table[Total[Flatten[IntegerPartitions[n]^3]],{n,0,40}] (* Harvey P. Dale, May 01 2016 *) b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], Function[{g, h}, g + h + {0, h[[1]]*i^3}][b[n, i-1], b[n-i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} A066633(n,k) * k^3.
G.f.: g(x) = (Sum_{k>=1} k^3*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ sqrt(3)/5 * exp(Pi*sqrt(2*n/3)) * n. - Vaclav Kotesovec, May 28 2018
Comments