A229663
Numbers n such that (40^n + 1)/41 is prime.
Original entry on oeis.org
53, 67, 1217, 5867, 6143, 11681, 29959
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524.
-
Do[ p=Prime[n]; If[ PrimeQ[ (40^p + 1)/41 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((40^n+1)/41) \\ Charles R Greathouse IV, Feb 17 2017
A230036
Numbers n such that (39^n + 1)/40 is prime.
Original entry on oeis.org
3, 13, 149, 15377
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 (numbers n such that (2^n + 1)/3 is prime).
Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524.
-
Do[ p=Prime[n]; If[ PrimeQ[ (39^p + 1)/40 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((39^n+1)/40) \\ Charles R Greathouse IV, Feb 17 2017
A231604
Numbers n such that (42^n + 1)/43 is prime.
Original entry on oeis.org
3, 709, 1637, 17911, 127609, 172663
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- P. Bourdelais, A Generalized Repunit Conjecture
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663.
-
Do[ p=Prime[n]; If[ PrimeQ[ (42^p + 1)/43 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((42^n+1)/43) \\ Charles R Greathouse IV, Feb 20 2017
a(5)=127609 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 02 2018
a(6)=172663 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 29 2019
A231865
Numbers n such that (43^n + 1)/44 is prime.
Original entry on oeis.org
5, 7, 19, 251, 277, 383, 503, 3019, 4517, 9967, 29573
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604.
-
Do[ p=Prime[n]; If[ PrimeQ[ (43^p + 1)/44 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((43^n+1)/44) \\ Charles R Greathouse IV, Feb 20 2017
A235683
Numbers n such that (46^n + 1)/47 is prime.
Original entry on oeis.org
7, 23, 59, 71, 107, 223, 331, 2207, 6841, 94841
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865.
-
Do[ p=Prime[n]; If[ PrimeQ[ (46^p + 1)/47 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((46^n+1)/47) \\ Charles R Greathouse IV, May 22 2017
A237052
Numbers n such that (49^n + 1)/50 is prime.
Original entry on oeis.org
7, 19, 37, 83, 1481, 12527, 20149
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime.
Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865,
A235683,
A236167,
A236530.
-
Do[ p=Prime[n]; If[ PrimeQ[ (49^p + 1)/50 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((49^n+1)/50) \\ Charles R Greathouse IV, Jun 13 2017
A236167
Numbers k such that (47^k + 1)/48 is prime.
Original entry on oeis.org
5, 19, 23, 79, 1783, 7681
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field.
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers k such that (2^k + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865,
A235683.
-
Do[ p=Prime[n]; If[ PrimeQ[ (47^p + 1)/48 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((47^n+1)/48) \\ Charles R Greathouse IV, Jun 06 2017
-
from sympy import isprime
def afind(startat=0, limit=10**9):
pow47 = 47**startat
for k in range(startat, limit+1):
q, r = divmod(pow47+1, 48)
if r == 0 and isprime(q): print(k, end=", ")
pow47 *= 47
afind(limit=300) # Michael S. Branicky, May 19 2021
A236530
Numbers n such that (48^n + 1)/49 is prime.
Original entry on oeis.org
5, 17, 131, 84589
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865,
A235683,
A236167.
-
Do[ p=Prime[n]; If[ PrimeQ[ (48^p + 1)/49 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((48^n+1)/49) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-8 of 8 results.
Comments