cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229543 Number of undirected circular permutations i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are perfect squares.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 9, 14, 32, 184, 123, 696, 935, 6554, 21105, 60756, 241780, 517970, 1835109, 5741024, 16091004, 63590090, 285113492, 1098219807
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 25 2013

Keywords

Comments

Theorem: For any integer n > 5, there is a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n with both 1 and 4 adjacent to 0 such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are perfect squares.
Proof: By examples, the result holds for n = 6, ..., 11. Below we assume n > 11 and exhibit a circular permutation meeting the requirement.
If n == 0 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,8,7,6,2,3,4,0,1,5,9,10,11,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 3 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,11,10,9,5,1,0,4,3,2,6,7,8,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 1 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,9,8,7,3,2,1,0,4,5,6,10,11,12,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 4 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,12,11,10,6,5,4,0,1,2,3,7,8,9,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 2 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,10,9,8,4,0,1,5,6,2,3,7,11,12,13,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 5 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,13,12,11,7,3,2,6,5,1,0,4,8,9,10,...,n-9,n-8,n-7,n-3,n-2,n-1).
Zhi-Wei Sun also used a similar method to show that for any positive integer n not equal to 2 or 4 there is a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are triangular numbers.

Examples

			a(1) = 1 due to the circular permutation (0,1).
a(4) = 1 due to the circular permutation (0,1,2,3,4).
a(6) = 1 due to the circular permutation (0,1,5,6,2,3,4).
a(7) = 1 due to the circular permutation (0,1,2,3,7,6,5,4).
a(8) = 1 due to the circular permutation (0,1,5,6,2,3,7,8,4).
a(9) = 9 due to the circular permutations
  (0,1,2,3,4,5,6,7,8,9), (0,1,2,3,4,8,7,6,5,9),
  (0,1,2,3,7,6,5,4,8,9), (0,1,2,3,7,6,5,9,8,4),
  (0,1,2,6,5,4,3,7,8,9), (0,1,2,6,5,9,8,7,3,4),
  (0,1,5,4,3,2,6,7,8,9), (0,1,5,9,8,7,6,2,3,4),
  (0,4,3,2,1,5,6,7,8,9).
a(10) > 0 due to the permutation (0,1,2,3,7,8,9,10,6,5,4).
a(11) > 0 due to the permutation (0,1,5,9,8,7,11,10,6,2,3,4).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required circular permutations for n = 8. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction. Thus a(8) is half of the number of circular permutations yielded by this program. *)
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    f[i_,j_]:=f[i,j]=SQ[Abs[i-j]]
    V[i_]:=V[i]=Part[Permutations[{1,2,3,4,5,6,7,8}],i]
    m=0
    Do[Do[If[f[If[j==0,0,Part[V[i],j]],If[j<8,Part[V[i],j+1],0]]==False,Goto[aa]],{j,0,8}];m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]," ",Part[V[i],8]];Label[aa];Continue,{i,1,8!}]

Extensions

a(10)-a(24) from Alois P. Heinz, Sep 26 2013
a(25)-a(26) from Max Alekseyev, Jan 08 2015