A229593 Number of boomerang patterns appearing in n X n coins, rotation not allowed.
0, 2, 3, 4, 10, 12, 14, 24, 27, 30, 44, 48, 52, 70, 75, 80, 102, 108, 114, 140, 147, 154, 184, 192, 200, 234, 243, 252, 290, 300, 310, 352, 363, 374, 420, 432, 444, 494, 507, 520, 574, 588, 602, 660, 675, 690, 752, 768
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Kival Ngaokrajang, Illustration of initial terms
- Kival Ngaokrajang, Illustration of 6-curve patterns
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Crossrefs
Programs
-
Magma
[(n-1)*Floor(n/3): n in [2..60]]; // Vincenzo Librandi, Jul 09 2015
-
Mathematica
CoefficientList[Series[(2 x^4 + x^3 + x^2 + 2 x)/((1 - x^3)^2 (1 - x)), {x, 0, 80}], x] (* Vincenzo Librandi, Oct 10 2013 *)
-
PARI
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-1,0,-2,2,0,1]^(n-2)*[0;2;3;4;10;12;14])[1,1] \\ Charles R Greathouse IV, Jun 16 2015
Formula
G.f.: (2*x^6 + x^5 + x^4 + 2*x^3)/((1-x^3)^2 * (1-x)). - Ralf Stephan, Oct 05 2013
a(n) = (n-1)*floor(n/3). - Laurance L. Y. Lau, Jun 22 2015
Extensions
G.f. adapted to the offset by Vincenzo Librandi, Oct 10 2013
Comments