A229816 Number of partitions of n such that if the length is k then k is not a part.
1, 0, 2, 2, 4, 5, 9, 11, 18, 23, 34, 44, 63, 80, 111, 142, 190, 242, 319, 402, 522, 655, 837, 1045, 1322, 1638, 2053, 2532, 3144, 3857, 4757, 5803, 7111, 8636, 10516, 12716, 15404, 18543, 22355, 26807, 32168, 38430, 45929, 54670, 65088, 77220, 91599, 108330, 128077, 151006, 177974
Offset: 0
Keywords
Examples
a(2) = 2 : 2, 11. a(6) = 9 : 6, 51, 411, 33, 3111, 222, 2211, 21111, 111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Atul Dixit, Gaurav Kumar, and Aviral Srivastava, Non-Rascoe partitions and a rank parity function associated to the Rogers-Ramanujan partitions, arXiv:2508.04359 [math.CO], 2025. See references.
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i
n, 0, b(n-i, i, t)))) end: a:= n-> b(n$2, 1)-b((n-1)$2, 2): seq(a(n), n=0..60); # Alois P. Heinz, Sep 30 2013 -
Mathematica
nn=50;CoefficientList[Series[ Product[1/(1-x^i),{i,1,nn}]-x Product[1/(1-x^i),{i,2,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 30 2013 *) Table[PartitionsP[n] - (PartitionsP[n - 1] - PartitionsP[n - 2]), {n, 0, 60}] (* Vincenzo Librandi, Jun 30 2019 *)
-
PARI
N=66; x='x+O('x^N); gf = 1/eta(x) - x*(1-x)/eta(x); Vec( gf ) \\ Joerg Arndt, Sep 30 2013
Formula
From Joerg Arndt, Sep 30 2013: (Start)
G.f.: 1/E(x) - x*(1-x)/E(x) where E(x) = Product_{k>=1} 1-x^k. (End)
Extensions
Corrected a(8) and extended beyond a(9), Joerg Arndt, Sep 30 2013
Comments