cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229816 Number of partitions of n such that if the length is k then k is not a part.

Original entry on oeis.org

1, 0, 2, 2, 4, 5, 9, 11, 18, 23, 34, 44, 63, 80, 111, 142, 190, 242, 319, 402, 522, 655, 837, 1045, 1322, 1638, 2053, 2532, 3144, 3857, 4757, 5803, 7111, 8636, 10516, 12716, 15404, 18543, 22355, 26807, 32168, 38430, 45929, 54670, 65088, 77220, 91599, 108330, 128077, 151006, 177974
Offset: 0

Views

Author

Jon Perry, Sep 30 2013

Keywords

Comments

For example with n=5 neither 32 or 311 are allowed.
Conjecture: Also, for n>=1, a(n-1) is the total number of distinct parts of each partition of 2n with partition rank n. - George Beck, Jun 23 2019

Examples

			a(2) = 2 : 2, 11.
a(6) = 9 : 6, 51, 411, 33, 3111, 222, 2211, 21111, 111111.
		

Crossrefs

Cf. A116645.
Cf. A002865 (partitions where the number of parts is itself a part).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(in, 0, b(n-i, i, t))))
        end:
    a:= n-> b(n$2, 1)-b((n-1)$2, 2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 30 2013
  • Mathematica
    nn=50;CoefficientList[Series[ Product[1/(1-x^i),{i,1,nn}]-x Product[1/(1-x^i),{i,2,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 30 2013 *)
    Table[PartitionsP[n] - (PartitionsP[n - 1] - PartitionsP[n - 2]), {n, 0, 60}] (* Vincenzo Librandi, Jun 30 2019 *)
  • PARI
    N=66;  x='x+O('x^N);
    gf = 1/eta(x) - x*(1-x)/eta(x);
    Vec( gf )
    \\ Joerg Arndt, Sep 30 2013

Formula

From Joerg Arndt, Sep 30 2013: (Start)
a(n) = A000041(n) - A002865(n-1), n>=1.
G.f.: 1/E(x) - x*(1-x)/E(x) where E(x) = Product_{k>=1} 1-x^k. (End)

Extensions

Corrected a(8) and extended beyond a(9), Joerg Arndt, Sep 30 2013