A230004
Numbers n such that phi(n) + sigma(n) = reversal(n) + 4.
Original entry on oeis.org
499, 2836, 4999, 49999, 280036, 4999999, 28000036, 283682836, 2800000000036
Offset: 1
phi(499)+sigma(499) = 498+500 = 994+4 = reversal(499)+4, so 499 is in the sequence.
-
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[1,n] + EulerPhi[n] == r[n] + 4, Print[n]], {n,1050000000}]
Select[Range[5*10^6],EulerPhi[#]+DivisorSigma[1,#]==IntegerReverse[#]+4&] (* The program generates the first 6 terms of the sequence. *) (* Harvey P. Dale, Dec 28 2024 *)
-
is(n)=subst(Polrev(digits(n)),'x,10)+4==eulerphi(n)+sigma(n) \\ Charles R Greathouse IV, Nov 08 2013
A230006
Numbers k such that sigma(k) + phi(k) = reversal(k) + 1.
Original entry on oeis.org
1, 37, 225, 397, 11112722, 1309286244182
Offset: 1
sigma(37)+phi(37) = 38+36 = 73+1 = reversal(37)+1.
-
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[1, n] + EulerPhi[n] == r[n]+1, Print[n]], {n, 1000000000}]
A136544
Numbers n such that phi(n)+sigma(n)=reversal(n)+3.
Original entry on oeis.org
3, 3997, 3999997, 168632373, 399999999997, 3999999999997
Offset: 1
phi(168632373)+sigma(168632373)=87744384+285492480=373236861+3= reversal(168632373)+3, so 168632373 is in the sequence.
-
Do[If[DivisorSigma[1,n]+EulerPhi@n==FromDigits@Reverse@IntegerDigits@n+ 3,Print[n]],{n,500000000}]
A230019
Numbers n such that sigma(n) + phi(n) = reversal(n) - 3.
Original entry on oeis.org
199993, 17333334, 19999993, 199999999993, 1999999999993
Offset: 1
-
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[1, n] + EulerPhi[n] == r[n]-3, Print[n]], {n, 1000000000}]
A237521
Numbers k such that phi(k) + sigma(k) = reversal(k) + 2.
Original entry on oeis.org
2, 22605, 26026, 492775589
Offset: 1
22605 is in the sequence because phi(22605) = 10880, sigma(22605) = 39744, and 10880 + 39744 = 50622 + 2, where 50622 is the reversal of 22605.
-
Select[Range[493*10^6],EulerPhi[#]+DivisorSigma[1,#]== IntegerReverse[ #]+2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 01 2020 *)
A237522
Numbers k such that phi(k) + sigma(k) = reversal(k) - 1.
Original entry on oeis.org
25, 165261124, 1698757933
Offset: 1
k = 165261124 is a term, because phi(k) = 67233600, sigma(k) = 353928960 and 67233600 + 353928960 = 421162561 - 1, where 421162561 is the reversal of 165261124.
Showing 1-6 of 6 results.
Comments