A230005
Numbers n such that phi(n) + sigma(n) = reversal(n) - 4.
Original entry on oeis.org
489, 4629, 296206, 460029, 29589106, 46000029, 2927272726, 4045046518, 21223345084, 29600331295, 296151515206, 460000000029
Offset: 1
489 is in the sequence because phi(489)+sigma(489) = 324+656 = 984-4 = reversal(489)-4.
-
Do[If[FromDigits@Reverse@IntegerDigits@n-4 == EulerPhi[n] + DivisorSigma[1, n], Print[n]], {n, 130000000}]
-
is(n)=subst(Polrev(digits(n)),'x,10)-4==eulerphi(n)+sigma(n) \\ Charles R Greathouse IV, Nov 08 2013
A136544
Numbers n such that phi(n)+sigma(n)=reversal(n)+3.
Original entry on oeis.org
3, 3997, 3999997, 168632373, 399999999997, 3999999999997
Offset: 1
phi(168632373)+sigma(168632373)=87744384+285492480=373236861+3= reversal(168632373)+3, so 168632373 is in the sequence.
-
Do[If[DivisorSigma[1,n]+EulerPhi@n==FromDigits@Reverse@IntegerDigits@n+ 3,Print[n]],{n,500000000}]
A230019
Numbers n such that sigma(n) + phi(n) = reversal(n) - 3.
Original entry on oeis.org
199993, 17333334, 19999993, 199999999993, 1999999999993
Offset: 1
-
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[1, n] + EulerPhi[n] == r[n]-3, Print[n]], {n, 1000000000}]
A237521
Numbers k such that phi(k) + sigma(k) = reversal(k) + 2.
Original entry on oeis.org
2, 22605, 26026, 492775589
Offset: 1
22605 is in the sequence because phi(22605) = 10880, sigma(22605) = 39744, and 10880 + 39744 = 50622 + 2, where 50622 is the reversal of 22605.
-
Select[Range[493*10^6],EulerPhi[#]+DivisorSigma[1,#]== IntegerReverse[ #]+2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 01 2020 *)
Showing 1-4 of 4 results.
Comments