cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306343 Number T(n,k) of defective (binary) heaps on n elements with k defects; triangle T(n,k), n>=0, 0<=k<=max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 9, 9, 3, 8, 28, 48, 28, 8, 20, 90, 250, 250, 90, 20, 80, 360, 1200, 1760, 1200, 360, 80, 210, 1526, 5922, 12502, 12502, 5922, 1526, 210, 896, 7616, 34160, 82880, 111776, 82880, 34160, 7616, 896, 3360, 32460, 185460, 576060, 1017060, 1017060, 576060, 185460, 32460, 3360
Offset: 0

Views

Author

Alois P. Heinz, Feb 08 2019

Keywords

Comments

A defect in a defective heap is a parent-child pair not having the correct order.
T(n,k) is the number of permutations p of [n] having exactly k indices i in {1,...,n} such that p(i) > p(floor(i/2)).
T(n,0) counts perfect (binary) heaps on n elements (A056971).

Examples

			T(4,0) = 3: 4231, 4312, 4321.
T(4,1) = 9: 2413, 3124, 3214, 3241, 3412, 3421, 4123, 4132, 4213.
T(4,2) = 9: 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2431, 3142.
T(4,3) = 3: 1234, 1243, 1324.
(The examples use max-heaps.)
Triangle T(n,k) begins:
    1;
    1;
    1,    1;
    2,    2,     2;
    3,    9,     9,     3;
    8,   28,    48,    28,      8;
   20,   90,   250,   250,     90,    20;
   80,  360,  1200,  1760,   1200,   360,    80;
  210, 1526,  5922, 12502,  12502,  5922,  1526,  210;
  896, 7616, 34160, 82880, 111776, 82880, 34160, 7616, 896;
  ...
		

Crossrefs

Row sums give A000142.
T(n,floor(n/2)) gives A306356.

Programs

  • Maple
    b:= proc(u, o) option remember; local n, g, l; n:= u+o;
          if n=0 then 1
        else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand(
             add(add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+
             add(add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o)*x)
          fi
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    b[u_, o_] := b[u, o] = Module[{n = u + o, g, l},
         If[n == 0, 1, g := 2^Floor@Log[2, n]; l = Min[g-1, n-g/2]; Expand[
         Sum[Sum[ Binomial[j-1, i]* Binomial[n-j, l-i]*b[i, l-i]*
         b[j-1-i, n-l-j+i], {i, 0, Min[j-1, l]}], {j, 1, u}]+
         Sum[Sum[Binomial[j - 1, i]* Binomial[n-j, l-i]*b[l-i, i]*
         b[n-l-j+i, j-1-i], {i, 0, Min[j-1, l]}], {j, 1, o}]*x]]];
    T[n_] := CoefficientList[b[n, 0], x];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Feb 17 2021, after Alois P. Heinz *)

Formula

T(n,k) = T(n,n-1-k) for n > 0.
Sum_{k>=0} k * T(n,k) = A001286(n).
Sum_{k>=0} (k+1) * T(n,k) = A001710(n-1) for n > 0.
Sum_{k>=0} (k+2) * T(n,k) = A038720(n) for n > 0.
Sum_{k>=0} (k+3) * T(n,k) = A229039(n) for n > 0.
Sum_{k>=0} (k+4) * T(n,k) = A230056(n) for n > 0.

A229039 G.f.: Sum_{n>=0} (n+2)^n * x^n / (1 + (n+2)*x)^n.

Original entry on oeis.org

1, 3, 7, 24, 108, 600, 3960, 30240, 262080, 2540160, 27216000, 319334400, 4071513600, 56043187200, 828193766400, 13076743680000, 219689293824000, 3912561709056000, 73627297615872000, 1459741204905984000, 30411275102208000000, 664182248232222720000
Offset: 0

Views

Author

Paul D. Hanna, Sep 11 2013

Keywords

Comments

More generally, we have the identity:
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.

Examples

			O.g.f.: A(x) = 1 + 3*x + 7*x^2 + 24*x^3 + 108*x^4 + 600*x^5 + 3960*x^6 +...
where
A(x) = 1 + 3*x/(1+3*x) + 4^2*x^2/(1+4*x)^2 + 5^3*x^3/(1+5*x)^3 + 6^4*x^4/(1+6*x)^4 + 7^5*x^5/(1+7*x)^5 +...
E.g.f.: E(x) = 1 + 3*x + 7*x^2/2! + 24*x^3/3! + 108*x^4/4! + 600*x^5/5! +...
where
E(x) = 1 + 3*x + 7/2*x^2 + 4*x^3 + 9/2*x^4 + 5*x^5 + 11/2*x^6 + 6*x^7 +...
which is the expansion of: (2 + 2*x - 3*x^2) / (2 - 4*x + 2*x^2).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n + 5)*n!/2; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 11 2022 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, ((m+2)*x)^m / (1 + (m+2)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1, (n+5) * n!/2 )}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (n+5) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 + 2*x - 3*x^2)/(2*(1-x)^2).
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 18*e - 237/5.
Sum_{n>=0} (-1)^n/a(n) = 243/5 - 130/e. (End)
Showing 1-2 of 2 results.