A230061 Primes of the form Catalan(n)+1.
2, 3, 43, 58787, 4861946401453, 337485502510215975556783793455058624701, 4180080073556524734514695828170907458428751314321, 1000134600800354781929399250536541864362461089950801, 944973797977428207852605870454939596837230758234904051
Offset: 1
Keywords
Examples
a(3)= 43: Catalan(5)= (2*5)!/(5!*(5+1)!)= 42. Catalan(5)+1= 43 which is prime. a(4)= 58787: Catalan(11)= (2*11)!/(11!*(11+1)!)= 58786. Catalan(11)+1= 58787 which is prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..25
- Chris K. Caldwell and G. L. Honaker,Jr., Prime Curios! 4250
Programs
-
Maple
KD:= proc() local a,b,c; a:= (2*n)!/(n!*(n + 1)!); b:=a+1;if isprime(b) then return(b): fi; end: seq(KD(),n=1..50);
-
Mathematica
Select[CatalanNumber[Range[100]]+1,PrimeQ] (* Harvey P. Dale, Aug 26 2021 *)
-
PARI
for(n=1,1e3,if(ispseudoprime(t=binomial(2*n,n)/(n+1)+1),print1(t", "))) \\ Charles R Greathouse IV, Oct 08 2013
Comments