cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A231885 Primes of the form Catalan(n) - 1.

Original entry on oeis.org

13, 41, 131, 1429, 4861, 477638699, 4861946401451, 5632681584560312734993915705849145099, 16435314834665426797069144960762886143367590394939, 171069509209912116706646841207804116182333282333996796075729541331934805254423
Offset: 1

Views

Author

K. D. Bajpai, Nov 21 2013

Keywords

Comments

The 22nd term a(22) in the sequence has 862 digits.
a(23) has 1134 digits; a(25) has 1413 digits; a(30) has 2046 digits; a(31) has 2348 digits (these are not included in b-file).

Examples

			a(2)= 41: n= 5: (2*n)!/(n!*(n + 1)!)-1= 41 which is prime.
a(4)= 1429: n= 8: (2*n)!/(n!*(n + 1)!)-1= 1429 which is prime.
		

Crossrefs

Cf. A000108 (Catalan numbers).
Cf. A053427 (numbers n : Catalan(n)-1 is prime).
Cf. A053429 (numbers n such that Catalan(n)+1 is prime).
Cf. A230061 (primes of the form Catalan(n)+1).

Programs

  • Maple
    KD:= proc() local a; a:= (2*n)!/(n!*(n + 1)!)-1;  if isprime(a) then return(a):  fi;  end:  seq(KD(), n=1..150);
  • Mathematica
    Select[CatalanNumber[Range[200]]-1,PrimeQ] (* Harvey P. Dale, Dec 21 2019 *)

A240435 Catalan numbers whose sum of digits is a prime.

Original entry on oeis.org

2, 5, 14, 16796, 208012, 18367353072152, 14544636039226909, 3116285494907301262, 45950804324621742364, 176733862787006701400, 270557451039395118028642463289168566420671280440, 3935312233584004685417853572763349509774031680023800
Offset: 1

Views

Author

K. D. Bajpai, Apr 05 2014

Keywords

Comments

The n-th Catalan number Catalan(n) = (2*n)!/(n!*(n+1)!).
The 40th term in the sequence, a(40), has 651 digits.
a(41), a(42), and a(43), which are not included in the b-file, have 1313, 1313, and 1317 digits, respectively.

Examples

			16796 is in sequence because Catalan(10) = (2*10)!/(10!*(10+1)!) = 16796: The digital sum(16796) = 29 which is prime.
208012 is in sequence because Catalan(12) = (2*12)!/(12!*(12+1)!) = 208012: The digital sum(208012) = 13 which is prime.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a, b; a:=(2*n)!/(n!*(n+1)!); b:=add( i,i = convert((a), base, 10))(a);  if isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..200);
  • Mathematica
    Select[CatalanNumber[Range[100]],PrimeQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Jul 19 2019 *)

A264042 Prime numbers adjacent to Catalan numbers (A000108).

Original entry on oeis.org

2, 3, 13, 41, 43, 131, 1429, 4861, 58787, 477638699, 4861946401451, 4861946401453, 5632681584560312734993915705849145099, 337485502510215975556783793455058624701, 4180080073556524734514695828170907458428751314321, 16435314834665426797069144960762886143367590394939
Offset: 1

Views

Author

Bill McEachen, Nov 01 2015

Keywords

Comments

A230061 and A231885 are a subset of this sequence.
The following are twin primes off of the n-th Catalan number: 5, 25, 145, ..., (11500). - Robert G. Wilson v, Nov 10 2015

Examples

			A000108(5)=42 and both 41 and 43 are adjacent prime numbers, and thus are sequence members.
		

Crossrefs

Cf. A000108 (Catalan numbers).
Cf. A173868 (smallest primes > Catalan numbers).
Cf. A231885, A230061 (Catalan(n)-1 and Catalan(n)+1 that are primes).

Programs

  • Mathematica
    Select[Union[# - 1, # + 1] &@ Table[(2 n)!/n!/(n + 1)!, {n, 100}], PrimeQ] (* Michael De Vlieger, Nov 05 2015 *)
  • PARI
    A264042()={for (n=1,10000,if(n<3,q=binomial(2*n,n)/(n+1)); if(n>2,q=2*qold1*(8*qold2+qold1)/(10*qold2-qold1)); qold2=qold1; qold1=q; if(ispseudoprime(q-1),print1(q-1,"," )); if(ispseudoprime(q+1),print1(q+1,"," )));}
    
  • PARI
    C=1; for(n=1,1e3, C*=2*(2*n-1)/(n+1); if(ispseudoprime(C-1), print1(C-1", ")); if(ispseudoprime(C+1), print1(C+1", "))) \\ Charles R Greathouse IV, Nov 05 2015
Showing 1-3 of 3 results.