A230087 Primes such that prime plus its digit sum is a perfect square.
2, 17, 179, 347, 467, 521, 1433, 1583, 2111, 3347, 10601, 12527, 25889, 28541, 32027, 33113, 39569, 39971, 41201, 43661, 45767, 55667, 58061, 59513, 61001, 62969, 63977, 67061, 70199, 77261, 92387, 92993, 100469, 109541, 120401, 122477, 130307, 156011, 163193
Offset: 1
Examples
a(2) = 17 is prime. Digit sum of 17 = 8, 17 + 8 = 25 = 5^2. a(5) = 467 is prime. Digit sum of 467 = 17, 467 + 17 = 484 = 22^2.
Links
- K. D. Bajpai and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (terms 2..150 from Bajpai)
Programs
-
Magma
[p: p in PrimesUpTo(6*10^5) | IsSquare(p+(&+Intseq(p)))]; // Vincenzo Librandi, Jun 02 2015
-
Maple
KD:= proc() local a,b,c,d; a:= ithprime(n);b:=add( i,i = convert((a), base, 10))(a); c:=a+b; d:=evalf(sqrt(c)); if d=floor(d) then return (a) :fi;end:seq(KD(),n=1..50000);
-
PARI
for(n=2,1e4,forprime(p=n^2-9*#digits(n^2),n^2, if(p+sumdigits(p) == n^2, print1(p", ")))) \\ Charles R Greathouse IV, Oct 08 2013
Extensions
a(1) from Charles R Greathouse IV, Oct 08 2013
Comments