cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230087 Primes such that prime plus its digit sum is a perfect square.

Original entry on oeis.org

2, 17, 179, 347, 467, 521, 1433, 1583, 2111, 3347, 10601, 12527, 25889, 28541, 32027, 33113, 39569, 39971, 41201, 43661, 45767, 55667, 58061, 59513, 61001, 62969, 63977, 67061, 70199, 77261, 92387, 92993, 100469, 109541, 120401, 122477, 130307, 156011, 163193
Offset: 1

Views

Author

K. D. Bajpai, Oct 08 2013

Keywords

Comments

Number of primes obtained from the sequence ‘prime plus its digit sum is perfect square’ is 150 for n = 1 to 3*10^5, while the sequence for ‘perfect cube’ yields only 11 primes for the same range of n. Hence, sequence for ‘square’ is framed.
Subsequence of primes of A066564. - Michel Marcus, Jun 02 2015

Examples

			a(2) = 17 is prime. Digit sum of 17 = 8, 17 + 8 = 25 = 5^2.
a(5) = 467 is prime. Digit sum of 467 = 17, 467 + 17 = 484 = 22^2.
		

Crossrefs

Cf. A048519.
Cf. A107288 (Primes whose digit sum is square).

Programs

  • Magma
    [p: p in PrimesUpTo(6*10^5) | IsSquare(p+(&+Intseq(p)))]; // Vincenzo Librandi, Jun 02 2015
  • Maple
    KD:= proc() local a,b,c,d; a:= ithprime(n);b:=add( i,i = convert((a), base, 10))(a); c:=a+b; d:=evalf(sqrt(c)); if d=floor(d) then return (a) :fi;end:seq(KD(),n=1..50000);
  • PARI
    for(n=2,1e4,forprime(p=n^2-9*#digits(n^2),n^2, if(p+sumdigits(p) == n^2, print1(p", ")))) \\ Charles R Greathouse IV, Oct 08 2013
    

Extensions

a(1) from Charles R Greathouse IV, Oct 08 2013