A230115 Numbers n such that tau(n+1) - tau(n) = 2; where tau(n) = the number of divisors of n (A000005).
5, 7, 13, 27, 37, 51, 61, 62, 73, 74, 91, 115, 123, 146, 153, 157, 164, 187, 188, 193, 206, 235, 245, 267, 274, 277, 278, 284, 291, 313, 355, 356, 362, 369, 386, 397, 403, 411, 421, 422, 423, 425, 427, 428, 451, 457, 538, 541, 605, 613, 637, 657, 661, 667, 673
Offset: 1
Keywords
Examples
Number 7 is in sequence because tau(8) - tau(7) = 4 - 2 = 2.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..2000
Crossrefs
Subsequence of A162318. - Michel Marcus, Mar 26 2017
Programs
-
Mathematica
Select[ Range[ 50000], DivisorSigma[0, # ] + 2 == DivisorSigma[0, # + 1] &] Flatten[Position[Partition[DivisorSigma[0,Range[700]],2,1],? (#[[2]]- #[[1]] == 2&),{1},Heads->False]] (* _Harvey P. Dale, Aug 03 2014 *)
-
PARI
isok(n) = (numdiv(n+1) - numdiv(n)) == 2; \\ Michel Marcus, Mar 26 2017
-
Python
from sympy.ntheory import divisor_count [n for n in range(1000) if divisor_count(n + 1) - divisor_count(n) == 2] # Indranil Ghosh, Mar 26 2017
Comments